def mystery(x):
if not isinstance(x, str): return False
k = ord('*')
e = (chr(2**6 + 2**3) +
chr(3**4 - 6) +
chr(4**3 + 4) +
chr(5**2 * 3) +
chr(2**2 * 17) +
chr(150 // 2))
if len(x) != len(e): return False
for i in range(len(e)):
if ord(x[i]) != ord(e[i]) ^ k:
return False
return True
def mystery(x):
# Accept only strings
if not isinstance(x, str):
return False
# First 19 primes
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67]
# Fibonacci helper (we need fib(n) for n up to 23)
def fib(n):
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
# Build the expected string using a convoluted sequence of ops
expected_chars = []
for i in range(len(primes)):
p = primes[i]
f = fib(i + 5) # fib(5) ... fib(23)
# combine components and keep only low 8 bits
v = ( (p * 13) ^ (f * 7) ^ ((i << 4) + 0xA5) ) & 0xFF
# three-way nonlinear transform
if i % 3 == 0:
# rotate left 1 on 8 bits
v = ((v << 1) | (v >> 7)) & 0xFF
elif i % 3 == 1:
v = (~v) & 0xFF
else:
v = v ^ 0x55
# add a quadratic offset, keep low 8 bits
v = (v + (i * i + 17)) & 0xFF
# finally fold into the printable ASCII range 32..126
ch = chr((v % 95) + 32)
expected_chars.append(ch)
expected = ''.join(expected_chars)
# Quick length check then exact match
if len(x) != len(expected):
return False
return x == expected
def mystery(x):
if not isinstance(x, str): return False
# First 7 primes
primes = [2,3,5,7,11,13,17]
# Fib helper
def fib(n):
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
# Build expected
expected_chars = []
for i in range(len(primes)):
p = primes[i]
f = fib(i + 4) # fib(4) to fib(10)
# Combine
v = (p * 5) + (f * 2)
v = v ^ (i + 10)
v = v & 0xFF
# Transform based on i % 4
if i % 4 == 0:
v = ((v << 3) | (v >> 5)) & 0xFF
elif i % 4 == 1:
v = v ^ 0xAA
elif i % 4 == 2:
v = (~v) & 0xFF
elif i % 4 == 3:
v = (v * 3) & 0xFF
# Add linear offset
v = (v + (i * 7 + 1)) & 0xFF
# To printable 33-126 (94 chars)
ch = chr((v % 94) + 33)
expected_chars.append(ch)
expected = ''.join(expected_chars)
if len(x) != len(expected): return False
return x == expected
def mystery(x):
# Accept only strings
if not isinstance(x, str):
return False
# Obfuscated byte sequence (see explanation)
data = [141, 27, 107, 169, 192, 130, 85, 210, 187, 112, 152, 251]
key = [0x5A, 0xC3, 0x9F] # rotates every 3 bytes
if len(x) != len(data):
return False
for i, d in enumerate(data):
# reverse the obfuscation:
# 1) subtract 0x7D (125) modulo 256
# 2) XOR with rotating key
# 3) subtract (i*13 + 7) modulo 256 -> original ordinal
t2 = (d - 0x7D) & 0xFF
temp = t2 ^ key[i % len(key)]
orig = (temp - (i * 13 + 7)) & 0xFF
if ord(x[i]) != orig:
return False
return True
def mystery(x):
if not isinstance(x, str): return False
primes = [2,3,5,7,11,13,17,19,23,29,31,37]
def fib(n):
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
expected_chars = []
for i in range(len(primes)):
p = primes[i]
f = fib(i + 3)
temp = p**2 + f * 3
xor_val = i * 5 + 1
v = temp ^ xor_val
v = v & 0xFF
if i % 3 == 0:
v = ((v << 2) | (v >> 6)) & 0xFF
elif i % 3 == 1:
v = v ^ 0x3C
else:
v = (v * 2 + 17) & 0xFF
v = (v + i**2) & 0xFF
ch = chr((v % 90) + 33)
expected_chars.append(ch)
expected = ''.join(expected_chars)
if len(x) != len(expected): return False
return x == expected
def mystery(x):
# Accept only strings
if not isinstance(x, str):
return False
# First 10 primes
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
# Fibonacci helper
def fib(n):
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
expected_chars = []
for i, p in enumerate(primes):
f = fib(i + 3) # fib(3) .. fib(12)
# mix arithmetic and bitwise ops (parenthesized to avoid ambiguity)
v = ((p * 7) ^ (f * 5)) + (i * 31 + 13)
v = v & 0xFF
# three-way nonlinear transform
if i % 3 == 0:
# rotate left 3 on 8 bits
v = ((v << 3) | (v >> 5)) & 0xFF
elif i % 3 == 1:
v = v ^ 0x5A
else:
v = (~v) & 0xFF
# fold into printable ASCII range 33..126
ch = chr((v % 94) + 33)
expected_chars.append(ch)
expected = ''.join(expected_chars)
if len(x) != len(expected):
return False
return x == expected
def mystery(x):
if not isinstance(x, str): return False
primes = [2,3,5,7,11,13,17,19,23,29,31,37,41,43,47]
def fib(n):
a, b = 0, 1
for _ in range(n):
a, b = b, a + b
return a
expected_chars = []
for i in range(len(primes)):
p = primes[i]
f = fib(i + 4)
v = (p * 11) ^ (f << 2)
v = v + (i * 17 + 5)
v = v & 0xFF
if i % 4 == 0:
v = ((v << 4) | (v >> 4)) & 0xFF
elif i % 4 == 1:
v = v ^ 0xA5
elif i % 4 == 2:
v = (~v) & 0xFF
elif i % 4 == 3:
v = (v * 5) & 0xFF
v = (v + (i**2 * 3)) & 0xFF
ch = chr((v % 95) + 32)
expected_chars.append(ch)
expected = ''.join(expected_chars)
if len(x) != len(expected): return False
return x == expected
def mystery(x):
# Accept only strings
if not isinstance(x, str):
return False
# Obfuscated bytes (see explanation)
data = [135, 6, 151, 206, 23, 234, 180, 140,
19, 168, 179, 2, 212, 218, 97, 16]
key = [0x5A, 0xC3, 0x9F, 0x17, 0xB2, 0x6D, 0xE4]
mul = [3, 5, 7, 11, 13]
add = [0x1F, 0xA7, 0x4C, 0x9D, 0x33] # 31,167,76,157,51
def ror(v, n):
return ((v >> n) | ((v << (8 - n)) & 0xFF)) & 0xFF
if len(x) != len(data):
return False
for i, d in enumerate(data):
# reverse final XOR
t = d ^ 0x7E
# reverse linear add: temp = (orig_rotated * mul + add) & 0xFF
a = add[i % len(add)]
m = mul[i % len(mul)]
# subtract add modulo 256
t2 = (t - a) & 0xFF
# multiply-inverse modulo 256 (mul are odd so inverse exists)
inv = pow(m, -1, 256)
t3 = (t2 * inv) & 0xFF
# reverse XOR with rotating key
k = key[i % len(key)]
t4 = t3 ^ k
# reverse rotate-left by (i%5)+1 -> rotate-right by same
rot = (i % 5) + 1
orig_byte = ror(t4, rot)
# reverse initial additive offset (i*31 + 17)
expected = (orig_byte - (i * 31 + 17)) & 0xFF
if ord(x[i]) != expected:
return False
return True
def mystery(x):
if not isinstance(x, str): return False
primes = [2,3,5,7,11,13,17,19,23,29,31,37]
def tri(n):
return n * (n + 1) // 2
expected_chars = []
for i in range(len(primes)):
p = primes[i]
t = tri(i + 1)
v = (p ** 2) * t
v = v ^ (i * 7 + 3)
v = v & 0xFF
if i % 5 == 0:
v = ((v << 1) | (v >> 7)) & 0xFF
elif i % 5 == 1:
v = v ^ 0xF0
elif i % 5 == 2:
v = (~v) & 0xFF
elif i % 5 == 3:
v = (v * 4) & 0xFF
elif i % 5 == 4:
v = ((v >> 2) | (v << 6)) & 0xFF
v = (v + (i * 11 + 19)) & 0xFF
ch = chr((v % 95) + 32)
expected_chars.append(ch)
expected = ''.join(expected_chars)
if len(x) != len(expected): return False
return x == expected
def mystery(x):
# Accept only strings
if not isinstance(x, str):
return False
# Obfuscated bytes (constructed from the target by a layered transform)
data = [49, 181, 7, 124, 36, 208, 25, 124,
109, 228, 54, 195, 92, 80, 18, 144]
key = [0x5A, 0xC3, 0x9F, 0x17] # repeating XOR key
if len(x) != len(data):
return False
for i, d in enumerate(data):
# reverse the obfuscation that produced d from the original byte:
# 1) original_byte was XORed with key[i%len(key)]
# 2) then added (i*7 + 3) modulo 256
t = (d - (i * 7 + 3)) & 0xFF
orig = t ^ key[i % len(key)]
if ord(x[i]) != orig:
return False
return True