def mystery(x):
l = [1124864, 1030301, 1259712, 1259712, 1367631, 32768, 1685159, 1367631, 1481544, 1259712, 1000000]
t = ''.join(chr(round(i ** (1/3))) for i in l)
return x == t
def mystery(x):
if not (isinstance(x, str) and len(x) == 7 and x.isalpha() and x.islower()):
return False
if x != x[::-1]:
return False
key = sum((ord(c) - 96) * (i + 1) for i, c in enumerate(x))
return pow(key, 3, 4087) == 576
def mystery(x):
l = [10000000000, 12762815625, 11040808032, 11040808032, 12762815625, 9509900499, 21924480357, 14693280768, 21003416576]
t = ''.join(chr(round(i ** (1/5))) for i in l)
return x == t
def mystery(x):
"""
To solve this puzzle, you must find a string 'x' that satisfies a set of hidden criteria.
The function's logic will guide you.
"""
# A standard primality test. You can assume this function is correct and not part of the trick.
def is_prime(n):
if n < 2:
return False
if n == 2 or n == 3:
return True
if n % 2 == 0 or n % 3 == 0:
return False
i = 5
# Check factors of the form 6k +/- 1 up to sqrt(n)
while i * i <= n:
if n % i == 0 or n % (i + 2) == 0:
return False
i += 6
return True
# The alphabet for a custom number system. The order matters.
alphabet = "etaoinshrdlu"
base = len(alphabet)
# Basic input validation.
if not isinstance(x, str) or not x:
return False
if not all(c in alphabet for c in x):
return False
# Decode the input string 'x' from the custom base into an integer.
value = 0
for char in x:
value = value * base + alphabet.index(char)
# The decoded value must satisfy two specific mathematical properties.
# Property 1: It must be a prime number.
if not is_prime(value):
return False
# Property 2: Its representation in binary must be a palindrome.
# (e.g., 17 is 10001 in binary, which is a palindrome)
bin_rep = bin(value)[2:]
if bin_rep != bin_rep[::-1]:
return False
return True
def mystery(x):
l = [12544, 1601613, 221533456, 27027081632, 1586874322944, 107213535210701]
exps = [2, 3, 4, 5, 6, 7]
t = ''.join(chr(round(i ** (1/e))) for i, e in zip(l, exps))
return x == t
import math
def mystery(x):
"""
To solve this puzzle, you must find a very specific set of points.
The function's logic is your guide.
"""
# Constraint: Input must be a list of 8 tuples, each with 2 integers.
if not isinstance(x, list) or len(x) != 8:
return False
if not all(isinstance(p, tuple) and len(p) == 2 and
isinstance(p[0], int) and isinstance(p[1], int) for p in x):
return False
# Constraint: All points must be unique.
if len(set(x)) != 8:
return False
# Constraint: All points must lie on a circle centered at the origin.
# Calculate the squared radius for the first point.
try:
r_squared = x[0][0]**2 + x[0][1]**2
except (TypeError, IndexError):
return False
if r_squared == 0: # Avoid trivial solutions.
return False
# Check if all other points have the same squared radius.
if not all(p[0]**2 + p[1]**2 == r_squared for p in x):
return False
# Sort points by angle to form a canonical simple polygon.
# Using atan2 is the standard way to order points on a circle.
try:
points = sorted(x, key=lambda p: math.atan2(p[1], p[0]))
except (TypeError, ValueError):
return False
# Calculate the area of the polygon formed by these points using the Shoelace formula.
# The points being on a circle and sorted by angle guarantees a convex polygon.
area = 0.0
for i in range(8):
p1 = points[i]
p2 = points[(i + 1) % 8]
area += (p1[0] * p2[1] - p2[0] * p1[1])
final_area = abs(area) / 2.0
# The final condition that x must satisfy.
return final_area == 157.0
def mystery(x):
l = [15386239549, 3137428376721, 266001988046875, 32784148879812096, 1093685272684360901, 370722131411856638976, 81376811860328619113321]
exps = [5, 6, 7, 8, 9, 10, 11]
t = ''.join(chr(round(i ** (1/e))) for i, e in zip(l, exps))
return x == t
import collections
def mystery(x):
"""
To solve this puzzle, you must find a 16-character string 'x' that represents
a specific, valid sequence.
"""
# Constraint 1: Input type and length.
if not isinstance(x, str) or len(x) != 16:
return False
# Constraint 2: Character set. Must be a permutation of 'abcdefghijklmnop'.
if set(x) != set("abcdefghijklmnop") or len(set(x)) != 16:
return False
# Convert characters to numerical values (a=1, b=2, ..., p=16).
try:
values = [ord(c) - ord('a') + 1 for c in x]
except (TypeError, ValueError):
return False
# The core property check.
# For each adjacent pair of values in the sequence...
for i in range(len(values) - 1):
# ...their sum must satisfy a certain mathematical property.
pair_sum = values[i] + values[i+1]
# A simple test for the required property.
if pair_sum < 2:
return False
# Check for factors from 2 up to the square root of the number.
for j in range(2, int(pair_sum**0.5) + 1):
if pair_sum % j == 0:
return False # Fails the property test.
# If all adjacent pair sums satisfy the property, the sequence is valid.
return True
def mystery(x):
l = [11156683466653165551101, 259374246010000000000, 17103393581163134765625, 112550881, 19925626416919921, 8596749257]
exps = [11, 10, 11, 4, 8, 5]
t = ''.join(chr(round(i ** (1/e))) for i, e in zip(l, exps))
return x == t
def mystery(x):
"""
To solve this puzzle, you must find a string 'x' that satisfies a set of hidden criteria.
The function's logic will guide you.
"""
# A standard algorithm for Longest Common Subsequence length.
# You can assume this is implemented correctly.
def lcs_length(s1, s2):
m, n = len(s1), len(s2)
dp = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(m):
for j in range(n):
if s1[i] == s2[j]:
dp[i+1][j+1] = dp[i][j] + 1
else:
dp[i+1][j+1] = max(dp[i+1][j], dp[i][j+1])
return dp[m][n]
# Basic input validation.
if not (isinstance(x, str) and len(x) == 15 and x.isalpha() and x.islower()):
return False
# The two sequences to compare against. Their structure is the main clue.
s1 = "abcdefghijklmnopqrstuvwxyz"
s2 = "zyxwutsrqponmlkjihgfedcba"
# Property 1: A measure of sortedness.
val1 = lcs_length(x, s1)
if val1 != 4:
return False
# Property 2: A measure of reverse-sortedness.
val2 = lcs_length(x, s2)
if val2 != 5:
return False
# Property 3: A checksum to narrow the search space.
# The sum of the 0-indexed alphabetical values of the characters.
try:
char_sum = sum(ord(c) - ord('a') for c in x)
except TypeError:
return False
if char_sum != 195:
return False
return True