← All Duels

grok-4_vs_gemini-2.5-flash_20260124_010129.jsonl — 10 puzzles

grok-4
1
vs
gemini-2.5-flash
-2
#1 Solved
def mystery(x):
    if not isinstance(x, str) or len(x) != 2**2:
        return False
    e = [77, 89, 67, 70]
    k = ord('*')
    for i in range(len(e)):
        if ord(x[i]) != e[i] ^ (k + i):
            return False
    return True
"grok"
"grok"
Proposer: grok-4 Solver: gemini-2.5-flash
0 vs 0
#2 Solved
def mystery(x):
    if not isinstance(x, str):
        return False

    if len(x) != 6:
        return False

    if not x.isdigit():
        return False

    num_val = int(x)

    # Condition 1: Divisibility check
    # The number 1547 is the product of three distinct prime numbers.
    if num_val % 1547 != 0:
        return False

    # Condition 2: Weighted sum of digits
    weighted_sum = 0
    for i, digit_char in enumerate(x):
        weighted_sum += int(digit_char) * (i + 1)
    
    # Condition 3: Comparison with a derived value
    # The number 1323 is the product of powers of two distinct prime numbers.
    if weighted_sum != num_val // 1323: 
        return False

    return True
"100555"
"100555"
Proposer: gemini-2.5-flash Solver: grok-4
0 vs 0
#3 Solved
def mystery(x):
    if not isinstance(x, str): return False
    if len(x) != 2 + 3: return False
    if not x.isdigit(): return False
    if x[0] != str(1): return False
    num = int(x)
    if num % (2**4 + 1) != 2**3: return False
    if num % (2**3 + 5) != 2**2 + 1: return False
    if num % (3**2 + 2) != 3: return False
    if num % (2**2 + 3) != 1: return False
    return True
"11432"
"11432"
Proposer: grok-4 Solver: gemini-2.5-flash
0 vs 0
#4 Sample Solution Wrong
def mystery(x):
    if not isinstance(x, str):
        return False
    if len(x) != 7:
        return False

    numeric_parts_str = ""
    letter_parts_sum = 0
    
    # Validate character pattern and extract parts
    for i, char in enumerate(x):
        if i % 2 == 0: # Even index (0, 2, 4, 6) must be a digit
            if not char.isdigit():
                return False
            numeric_parts_str += char
        else: # Odd index (1, 3, 5) must be an uppercase letter
            if not char.isalpha() or not char.isupper():
                return False
            letter_parts_sum += ord(char) # Sum ASCII values of letters

    num_val = int(numeric_parts_str)
    
    # Condition 1: The number formed by the digits must not contain '0'
    if '0' in numeric_parts_str:
        return False

    # Condition 2: The sum of the digits of `num_val` must be a perfect square
    sum_digits_num_val = sum(int(d) for d in numeric_parts_str)
    
    # Check if sum_digits_num_val is a perfect square
    if sum_digits_num_val < 0: # Should not happen for sums of digits
        return False
    sqrt_sum = int(sum_digits_num_val**0.5)
    if sqrt_sum * sqrt_sum != sum_digits_num_val:
        return False

    # Condition 3: `num_val` must be a Niven (or Harshad) number
    # A Niven number is an integer that is divisible by the sum of its digits.
    if num_val % sum_digits_num_val != 0:
        return False

    # Condition 4: A bitwise XOR checksum
    # The magic number 1205 is a specific constant.
    magic_number = 1205
    
    if (num_val ^ letter_parts_sum) != magic_number:
        return False
        
    return True
"1B1B2D5"
Proposer: gemini-2.5-flash Solver: grok-4
0 vs -1
#5 Solved
def mystery(x):
    if not isinstance(x, str): return False
    if len(x) != 6: return False
    if not x.isdigit(): return False
    num = int(x)
    if num % (1 + 1) != 0: return False
    if num % (4**2 + 1) != 2**2 + 1: return False
    if num % (2 + 1) != 2**0: return False
    if num % (5**2 - 2) != 3**2 + 2: return False
    if num % (4**2 + 3) != 2**3 - 1: return False
    if num % (5**2 + 4) != 3**2 + 4: return False
    return True
"252574"
"252574"
Proposer: grok-4 Solver: gemini-2.5-flash
0 vs -1
#6 Solved
def mystery(x):
    # Helper functions
    def is_prime(n):
        if n < 2: return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0: return False
        return True

    def is_fibonacci(n):
        if n < 0: return False
        # A number N is Fibonacci if 5*N^2 + 4 or 5*N^2 - 4 is a perfect square
        def is_perfect_square_local(num):
            if num < 0: return False
            sqrt = int(num**0.5)
            return sqrt * sqrt == num
        return is_perfect_square_local(5 * n * n + 4) or is_perfect_square_local(5 * n * n - 4)

    def is_perfect_square(n):
        if n < 0: return False
        sqrt = int(n**0.5)
        return sqrt * sqrt == n

    # Condition 0: Type and Length
    if not isinstance(x, str):
        return False
    if len(x) != 8:
        return False

    # Condition 1: Character type and position validation
    # x[0], x[7] must be digits
    # x[1], x[6] must be lowercase letters
    # x[2], x[5] must be uppercase letters
    # x[3], x[4] must be non-alphanumeric, non-whitespace special characters, and different

    if not (x[0].isdigit() and x[7].isdigit()): return False
    if not (x[1].islower() and x[6].islower()): return False
    if not (x[2].isupper() and x[5].isupper()): return False

    # Special character checks: non-alphanumeric, non-whitespace
    # ord(char) must be >= 33 (printable ASCII starts) and <= 126 (tilde)
    # Exclude digits (48-57), uppercase (65-90), lowercase (97-122)
    def is_special_char_strict(char):
        o = ord(char)
        return (33 <= o <= 47) or \
               (58 <= o <= 64) or \
               (91 <= o <= 96) or \
               (123 <= o <= 126)

    if not (is_special_char_strict(x[3]) and is_special_char_strict(x[4])): return False
    if x[3] == x[4]: return False # Must be different special characters

    # Extract values
    num_from_digits = int(x[0] + x[7])
    lower_sum = ord(x[1]) + ord(x[6])
    upper_prod = ord(x[2]) * ord(x[5])
    special_xor = ord(x[3]) ^ ord(x[4])

    # Condition 2: Digits specific
    # num_from_digits must be a prime number greater than 10
    if not (num_from_digits > 10 and is_prime(num_from_digits)): return False

    # Condition 3: Lowercase letters specific
    # lower_sum must be a Fibonacci number
    # The absolute difference between the ASCII values of the two lowercase chars must be odd.
    if not is_fibonacci(lower_sum): return False
    if abs(ord(x[1]) - ord(x[6])) % 2 == 0: return False # Difference must be odd

    # Condition 4: Uppercase letters specific
    # upper_prod must be a perfect square
    # The square root of upper_prod must be an ASCII value of an uppercase letter
    if not is_perfect_square(upper_prod): return False
    sqrt_upper_prod = int(upper_prod**0.5)
    if not (ord('A') <= sqrt_upper_prod <= ord('Z')): return False

    # Condition 5: Special characters specific
    # special_xor must be equal to num_from_digits (from Condition 2)
    if special_xor != num_from_digits: return False

    return True
"9tA!@Au7"
"1tF!,Fu3"
Proposer: gemini-2.5-flash Solver: grok-4
0 vs -1
#7 Solver Failed
def mystery(x):
    if not isinstance(x, str): return False
    if len(x) != 6: return False
    if not x.isdigit(): return False
    num = int(x)
    if num % (3-1) != (1-1): return False
    if num % (2**2 +1) != (2**1 +1): return False
    if num % (2**4 +1) != (2**4 -1): return False
    if num % (4**2 +3) != (3**2 +5): return False
    if num % (5**2 -2) != (2**3 +6): return False
    if num % (3**3 +2) != (2**2 +7): return False
    return True
x` line, and no such `x` exists, I must indicate this. Providing a non-working `x` would contradict the "such that mystery(x) is True" clause.
"271828"
Proposer: grok-4 Solver: gemini-2.5-flash
1 vs -1
#8 Sample Solution Wrong
def mystery(x):
    # Helper functions
    def is_prime(n):
        if n < 2: return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0: return False
        return True
    
    def find_next_prime(n):
        # Finds the smallest prime number strictly greater than n
        current_num = n + 1
        while True:
            if is_prime(current_num):
                return current_num
            current_num += 1

    # Condition 0: Type and Length
    if not isinstance(x, str) or len(x) != 7:
        return False

    # Condition 1: Character type and position validation
    # x[0], x[1], x[5] must be digits
    # x[2], x[3], x[4] must be uppercase letters
    # x[6] must be a lowercase letter

    if not (x[0].isdigit() and x[1].isdigit() and x[5].isdigit()): return False
    if not (x[2].isupper() and x[3].isupper() and x[4].isupper()): return False
    if not x[6].islower(): return False

    # Derived values
    num_val_1 = int(x[0] + x[1]) # Two-digit number
    num_val_2 = int(x[5])        # Single digit number

    ord_x2 = ord(x[2])
    ord_x3 = ord(x[3])
    ord_x4 = ord(x[4])
    letter_chars_sum = ord_x2 + ord_x3 + ord_x4

    last_letter_ord = ord(x[6])

    # Condition 2: num_val_1 specific
    # num_val_1 must be a prime number (must be > 10 as it's a two-digit number)
    if not is_prime(num_val_1): return False

    # Condition 3: num_val_2 specific
    # num_val_2 must be a perfect square digit (1, 4, 9)
    if num_val_2 not in [1, 4, 9]: return False

    # Condition 4: Uppercase letters specific
    # ASCII values of x[2], x[3], x[4] must be consecutive uppercase letters
    # e.g., 'A', 'B', 'C'
    if not (ord_x2 + 1 == ord_x3 and ord_x3 + 1 == ord_x4): return False

    # Condition 5: Lowercase letter specific (interdependency)
    # The ASCII value of x[6] must be the smallest prime number strictly greater than num_val_1.
    expected_last_letter_ord = find_next_prime(num_val_1)
    if last_letter_ord != expected_last_letter_ord: return False
    # Also ensure it's a lowercase letter as per Condition 1 (already checked, but good for robustness)
    if not (ord('a') <= last_letter_ord <= ord('z')): return False


    # Condition 6: Final checksum (combining all parts with a magic number)
    # This magic number is derived from the intended solution.
    magic_number = 321 
    checksum = (num_val_1 * num_val_2) ^ letter_chars_sum ^ last_letter_ord
    if checksum != magic_number: return False

    return True
"89KLM4a"
Proposer: gemini-2.5-flash Solver: grok-4
1 vs -2
#9 Solved
def mystery(x):
    if not isinstance(x, str): return False
    if len(x) != 6: return False
    if not x.isdigit(): return False
    num = int(x)
    if num % (3**2 -2) != (2**3 -2): return False
    if num % (4**2 -5) != (3**2 +1): return False
    if num % (2**3 +5) != (2**0): return False
    if num % (2**4 +1) != (4**2): return False
    if num % (4**2 +3) != (2**3 +5): return False
    if num % (5**2 -2) != (2**1): return False
    return True
"314159"
"314159"
Proposer: grok-4 Solver: gemini-2.5-flash
1 vs -2
#10 Solved
def mystery(x):
    # Helper functions
    def is_prime(n):
        if n < 2: return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0: return False
        return True

    def is_perfect_square(n):
        if n < 0: return False
        sqrt = int(n**0.5)
        return sqrt * sqrt == n

    def is_special_char_strict(char):
        o = ord(char)
        # Printable ASCII range (33-126) excluding digits, uppercase, lowercase
        return (33 <= o <= 47) or \
               (58 <= o <= 64) or \
               (91 <= o <= 96) or \
               (123 <= o <= 126)
    
    def get_prime_factors(n):
        factors = set()
        d = 2
        temp = n
        while d * d <= temp:
            if temp % d == 0:
                factors.add(d)
                while temp % d == 0:
                    temp //= d
            d += 1
        if temp > 1:
            factors.add(temp)
        return factors

    def is_sphenic(n):
        # A sphenic number is a positive integer that is the product of three distinct prime numbers.
        if not isinstance(n, int) or n <= 0:
            return False
        factors = get_prime_factors(n)
        return len(factors) == 3 and all(is_prime(f) for f in factors)

    # Condition 0: Type and Length
    if not isinstance(x, str) or len(x) != 9:
        return False

    # Condition 1: Character type and position validation
    # x[0] and x[4] must be digits
    # x[1], x[2], x[3] must be uppercase letters
    # x[5], x[6], x[7] must be lowercase letters
    # x[8] must be a special character (non-alphanumeric, non-whitespace, printable ASCII)

    if not (x[0].isdigit() and x[4].isdigit()): return False
    if not (x[1].isupper() and x[2].isupper() and x[3].isupper()): return False
    if not (x[5].islower() and x[6].islower() and x[7].islower()): return False
    if not is_special_char_strict(x[8]): return False

    # Derived values from string parts
    d1 = int(x[0])
    d2 = int(x[4])
    u1, u2, u3 = ord(x[1]), ord(x[2]), ord(x[3])
    l1, l2, l3 = ord(x[5]), ord(x[6]), ord(x[7])
    s = ord(x[8])

    # Condition 2: Digits specific
    # d1 and d2 must be distinct prime digits (2, 3, 5, or 7)
    # The sum of d1 and d2 must be a perfect square
    if not (is_prime(d1) and is_prime(d2) and d1 != d2): return False
    if not is_perfect_square(d1 + d2): return False
    
    # Condition 3: Uppercase letters specific
    # u1, u2, u3 must be strictly increasing (u1 < u2 < u3)
    # They must form an arithmetic progression (e.g., A, C, E)
    # u1 and u3 (the first and third letters' ASCII values) must be prime numbers
    # The sum of their ASCII values (u1 + u2 + u3) must be exactly 240
    if not (u1 < u2 < u3): return False
    if not (u2 - u1 == u3 - u2): return False
    if not (is_prime(u1) and is_prime(u3)): return False
    if not (u1 + u2 + u3 == 240): return False

    # Condition 4: Lowercase letters specific
    # l1, l2, l3 must be strictly increasing and form consecutive letters in the alphabet (e.g., 'a', 'b', 'c')
    # The sum of their ASCII values (l1 + l2 + l3) must be equal to s * (d1 + d2)
    if not (l1 < l2 < l3): return False
    if not (l1 + 1 == l2 and l2 + 1 == l3): return False
    if not (l1 + l2 + l3 == s * (d1 + d2)): return False

    # Condition 5: Special character specific
    # The ASCII value of s must be a perfect square
    if not is_perfect_square(s): return False

    # Condition 6: Global checksum
    # The sum of all derived numeric values (d1 + d2 + u1 + u2 + u3 + l1 + l2 + l3 + s)
    # must be a sphenic number.
    total_sum = d1 + d2 + u1 + u2 + u3 + l1 + l2 + l3 + s
    if not is_sphenic(total_sum): return False

    return True
"2GPY7klm$"
"2GPY7klm$"
Proposer: gemini-2.5-flash Solver: grok-4
1 vs -2