import base64
def mystery(x):
nums = [
int(100 - 3),
int(70.0 + 1),
43 * 2,
5**2 * 4 + 15,
49 * 2,
71,
7 * 8,
60 + 1
]
b = ''.join(chr(n) for n in nums)
t = base64.b64decode(b).decode()
return x == t
def mystery(x):
if not isinstance(x, str):
return False
# Obfuscated target string using hex codes
codes = [0x6d, 0x79, 0x73, 0x74, 0x69, 0x63, 0x61, 0x6c]
target = ''.join(chr(n) for n in codes)
# Hidden transformation parameters
shift_amount = int((20 + 6) / 2)
alpha_len = (10 + 3) * 2
lower_base = ord('a')
upper_base = ord('A')
# Apply transformation to input
transformed = []
for character in x:
code = ord(character)
if lower_base <= code <= lower_base + alpha_len - 1:
new_code = (code - lower_base + shift_amount) % alpha_len + lower_base
transformed.append(chr(new_code))
elif upper_base <= code <= upper_base + alpha_len - 1:
new_code = (code - upper_base + shift_amount) % alpha_len + upper_base
transformed.append(chr(new_code))
else:
transformed.append(character)
result = ''.join(transformed)
return result == target
def mystery(x):
if not isinstance(x, str):
return False
# Obfuscated target construction
base = 50 * 2
adds = [
5 * 3 + 4,
2 ** 2,
9 + 8,
1 + 1,
4,
3 * 6
]
target = ''.join(chr(base + add) for add in adds)
# Obfuscated parameters
shift = 1 + 1 + 1
alen = 13 * 2
lower_base = (10 ** 2) - 3
upper_base = (8 ** 2) + 1
# Obfuscated reverse
rev = ''
for i in range(len(x) - 1, -1, -1):
rev += x[i]
# Apply transformation
trans = []
for c in rev:
code = ord(c)
if lower_base <= code <= lower_base + alen - 1:
new_code = (code - lower_base + shift) % alen + lower_base
trans.append(chr(new_code))
elif upper_base <= code <= upper_base + alen - 1:
new_code = (code - upper_base + shift) % alen + upper_base
trans.append(chr(new_code))
else:
trans.append(c)
return ''.join(trans) == target
def mystery(x):
# Construct target using obfuscated values
base = 0x60
offsets = [
0x13 - 0x0E,
0x1C - 0x0E,
0x15 - 0x0C,
0x11 - 0x0A,
0x1A - 0x0D,
0x0F - 0x0E,
]
target = ''.join(chr(base + off) for off in offsets)
if not isinstance(x, str):
return False
# Apply transformation
result = []
idx = len(x) - 1
while idx >= 0:
char = x[idx]
code = ord(char)
if 0x61 <= code <= 0x7A: # lowercase
new_code = (code - 0x61 + 0x5) % 0x1A + 0x61
result.append(chr(new_code))
elif 0x41 <= code <= 0x5A: # uppercase
new_code = (code - 0x41 + 0x5) % 0x1A + 0x41
result.append(chr(new_code))
else:
result.append(char)
idx -= 1
return ''.join(result) == target
def mystery(x):
if not isinstance(x, int):
return False
acc = 0
mod3 = 1 + 2
mod4 = 2 ** 2
for i in range(1, (4 * 5) + 1):
if i % mod3 == 0:
acc += i * (1 + 1)
elif i % mod4 == 0:
acc -= i // (3 - 1)
else:
acc += i
acc = acc * mod3
five = 10 // 2
four = 2 ** 2
power3 = 2 + 1
power2 = 1 + 1
acc += (five ** power3 - four ** power2)
sub = 0
j = 1
ten = 5 * 2
two = 1 + 1
while j < ten:
sub += j ** two
j += 1
acc -= sub
mult = 1
for k in range(two, (3 * two)):
mult *= k
acc += mult
return x == acc
def mystery(x):
if not isinstance(x, int):
return False
# Obfuscated parameters using bit operations and arithmetic
p1 = (3 << 2) + (7 - 2)
r1 = (2 ** 4) - 3
p2 = (5 << 2) + 3
r2 = (3 * 3) - 2
p3 = (6 << 1) - 1
r3 = (2 * 3) - 1
# Range constraints
lower = (10 ** 3)
upper = lower * (5 * 2)
# Multiple simultaneous checks
c1 = (x % p1) == r1
c2 = (x % p2) == r2
c3 = (x % p3) == r3
c4 = x > lower and x < upper
return c1 and c2 and c3 and c4
def mystery(x):
if not isinstance(x, str):
return False
# Obfuscated key construction
k1 = (10 ** 2) + (8 - 1)
k2 = k1 - (3 + 3)
k3 = (11 ** 2)
key_str = ''.join(chr(k) for k in [k1, k2, k3])
# Obfuscated target construction
t1 = (100 - 1)
t2 = (100 + 5)
t3 = (100 - 3)
t4 = t3 + 1
t5 = t2
t6 = (110 + 4)
target = ''.join(chr(t) for t in [t1, t2, t3, t4, t5, t6])
# Obfuscated parameters
base = (10**2) - (1+1+1)
mod = (10 + 3) * 2
# Obfuscated lengths
key_len = 0
temp = key_str
while temp:
key_len += 1
temp = temp[1:]
x_len = 0
temp_x = x
while temp_x:
x_len += 1
temp_x = temp_x[1:]
if x_len == 0:
return False
# Encryption loop
result = []
key_idx = 0
i = 0
while i < x_len:
c = x[i]
code = ord(c)
if base <= code <= base + mod - 1:
key_char = key_str[key_idx % key_len]
shift = ord(key_char) - base
new_code = (code - base + shift) % mod + base
result.append(chr(new_code))
key_idx += 1
else:
result.append(c)
i += 1
encrypted = ''.join(result)
return encrypted == target
def mystery(x):
if not isinstance(x, int):
return False
if x <= 0:
return False
# Compute digital root through obfuscated method
temp = x
digit_sum = 0
counter = 0
while temp > 0:
digit_sum += temp % (5 * 2)
temp //= (5 * 2)
counter += 1
# Reduce to single digit
while digit_sum >= (5 * 2):
temp = digit_sum
digit_sum = 0
while temp > 0:
digit_sum += temp % (5 * 2)
temp //= (5 * 2)
# Check digital root
target_root = ((1 << 3) - 1)
if digit_sum != target_root:
return False
# Obfuscated modular arithmetic check
mod_val = ((1 << 2) + (1 << 1) + (1 << 0)) + (2 * 2)
rem_val = ((1 << 2) + (1 << 0))
if x % mod_val != rem_val:
return False
# Obfuscated range constraints
lower_bound = ((2 << 12) + (2 << 11)) + ((1 << 9) + (1 << 7))
upper_bound = ((1 << 14) + (1 << 12)) + ((1 << 11) + (1 << 10))
if x < lower_bound or x > upper_bound:
return False
# Additional prime factor check
temp_x = x
factor_count = 0
test_divisor = 2
while test_divisor * test_divisor <= temp_x:
if temp_x % test_divisor == 0:
factor_count += 1
while temp_x % test_divisor == 0:
temp_x //= test_divisor
test_divisor += 1
if temp_x > 1:
factor_count += 1
if factor_count < 2:
return False
return True
def mystery(x):
if not isinstance(x, int):
return False
# Obfuscated moduli and remainders
p1 = ((1 << 3) - (1 << 0))
r1 = ((1 << 2) - (1 << 0))
p2 = ((5 << 1) + (1 << 0))
r2 = (1 << 2)
p3 = ((1 << 4) - (1 + 1 + 1))
r3 = ((2 + 3) ** (1 << 0))
# Obfuscated range
exp = (1 + 1 + 1)
lower = (5 << 1) ** exp
factor = (1 + 1)
upper = lower * factor
# Modular checks
if (x % p1) != r1:
return False
if (x % p2) != r2:
return False
if (x % p3) != r3:
return False
# Range check
if not (x > lower and x < upper):
return False
# Obfuscated sum of digits
digit_sum = 0
temp = x
base = 5 * (1 + 1)
while temp > 0:
digit_sum += temp % base
temp //= base
target_sum = (1 << 3)
if digit_sum != target_sum:
return False
return True
def mystery(x):
if not isinstance(x, str):
return False
# Obfuscated length constraint
exp_len = (1 << 2) + (1 << 1)
actual_len = 0
temp = x
while temp:
actual_len += 1
temp = temp[1:]
if actual_len != exp_len:
return False
# Polynomial rolling hash with obfuscated parameters
h = 0
m1 = (1 << 8) + (1 << 5) + (1 << 0)
m2 = (1 << 10) + (1 << 3) + (1 << 1) + (1 << 0)
idx = 0
while idx < actual_len:
c = x[idx]
code = ord(c)
h = (h * m1 + code) % m2
idx += 1
target_h = (1 << 7) + (1 << 6) + (1 << 5) + (1 << 4) + (1 << 0)
if h != target_h:
return False
# XOR-based checksum with obfuscated target
xor_check = 0
pos = 0
while pos < actual_len:
xor_check = xor_check ^ ord(x[pos])
pos += 1
target_xor = (1 << 4) + (1 << 3) + (1 << 2) + (1 << 1)
if xor_check != target_xor:
return False
# Sum of character codes check
char_sum = 0
i = 0
while i < actual_len:
char_sum += ord(x[i])
i += 1
target_sum = (1 << 9) + (1 << 8) + (1 << 7) + (1 << 6) + (1 << 4) + (1 << 2)
return char_sum == target_sum