← All Duels

grok-4_vs_claude-sonnet-4-5-20250929_20260124_001336.jsonl — 10 puzzles

grok-4
0
vs
claude-sonnet-4-5-20250929
-1
#1 Solved
import base64

def mystery(x):
    nums = [
        int(100 - 3),
        int(70.0 + 1),
        43 * 2,
        5**2 * 4 + 15,
        49 * 2,
        71,
        7 * 8,
        60 + 1
    ]
    b = ''.join(chr(n) for n in nums)
    t = base64.b64decode(b).decode()
    return x == t
"hello"
"hello"
Proposer: grok-4 Solver: claude-sonnet-4-5-20250929
0 vs 0
#2 Solver Failed
def mystery(x):
    if not isinstance(x, str):
        return False
    
    # Obfuscated target string using hex codes
    codes = [0x6d, 0x79, 0x73, 0x74, 0x69, 0x63, 0x61, 0x6c]
    target = ''.join(chr(n) for n in codes)
    
    # Hidden transformation parameters
    shift_amount = int((20 + 6) / 2)
    alpha_len = (10 + 3) * 2
    lower_base = ord('a')
    upper_base = ord('A')
    
    # Apply transformation to input
    transformed = []
    for character in x:
        code = ord(character)
        if lower_base <= code <= lower_base + alpha_len - 1:
            new_code = (code - lower_base + shift_amount) % alpha_len + lower_base
            transformed.append(chr(new_code))
        elif upper_base <= code <= upper_base + alpha_len - 1:
            new_code = (code - upper_base + shift_amount) % alpha_len + upper_base
            transformed.append(chr(new_code))
        else:
            transformed.append(character)
    
    result = ''.join(transformed)
    return result == target
"zlfgvpnl"
"zlfgvpny"
Proposer: claude-sonnet-4-5-20250929 Solver: grok-4
0 vs 1
#3 Solved
def mystery(x):
    if not isinstance(x, str):
        return False
    
    # Obfuscated target construction
    base = 50 * 2
    adds = [
        5 * 3 + 4,
        2 ** 2,
        9 + 8,
        1 + 1,
        4,
        3 * 6
    ]
    target = ''.join(chr(base + add) for add in adds)
    
    # Obfuscated parameters
    shift = 1 + 1 + 1
    alen = 13 * 2
    lower_base = (10 ** 2) - 3
    upper_base = (8 ** 2) + 1
    
    # Obfuscated reverse
    rev = ''
    for i in range(len(x) - 1, -1, -1):
        rev += x[i]
    
    # Apply transformation
    trans = []
    for c in rev:
        code = ord(c)
        if lower_base <= code <= lower_base + alen - 1:
            new_code = (code - lower_base + shift) % alen + lower_base
            trans.append(chr(new_code))
        elif upper_base <= code <= upper_base + alen - 1:
            new_code = (code - upper_base + shift) % alen + upper_base
            trans.append(chr(new_code))
        else:
            trans.append(c)
    
    return ''.join(trans) == target
"secret"
"secret"
Proposer: grok-4 Solver: claude-sonnet-4-5-20250929
0 vs 1
#4 Solved
def mystery(x):
    # Construct target using obfuscated values
    base = 0x60
    offsets = [
        0x13 - 0x0E,
        0x1C - 0x0E,
        0x15 - 0x0C,
        0x11 - 0x0A,
        0x1A - 0x0D,
        0x0F - 0x0E,
    ]
    
    target = ''.join(chr(base + off) for off in offsets)
    
    if not isinstance(x, str):
        return False
    
    # Apply transformation
    result = []
    idx = len(x) - 1
    while idx >= 0:
        char = x[idx]
        code = ord(char)
        if 0x61 <= code <= 0x7A:  # lowercase
            new_code = (code - 0x61 + 0x5) % 0x1A + 0x61
            result.append(chr(new_code))
        elif 0x41 <= code <= 0x5A:  # uppercase
            new_code = (code - 0x41 + 0x5) % 0x1A + 0x41
            result.append(chr(new_code))
        else:
            result.append(char)
        idx -= 1
    
    return ''.join(result) == target
"vhbdiz"
"vhbdiz"
Proposer: claude-sonnet-4-5-20250929 Solver: grok-4
0 vs 1
#5 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    
    acc = 0
    mod3 = 1 + 2
    mod4 = 2 ** 2
    for i in range(1, (4 * 5) + 1):
        if i % mod3 == 0:
            acc += i * (1 + 1)
        elif i % mod4 == 0:
            acc -= i // (3 - 1)
        else:
            acc += i
    
    acc = acc * mod3
    
    five = 10 // 2
    four = 2 ** 2
    power3 = 2 + 1
    power2 = 1 + 1
    acc += (five ** power3 - four ** power2)
    
    sub = 0
    j = 1
    ten = 5 * 2
    two = 1 + 1
    while j < ten:
        sub += j ** two
        j += 1
    
    acc -= sub
    
    mult = 1
    for k in range(two, (3 * two)):
        mult *= k
    
    acc += mult
    
    return x == acc
547
547
Proposer: grok-4 Solver: claude-sonnet-4-5-20250929
0 vs 1
#6 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    
    # Obfuscated parameters using bit operations and arithmetic
    p1 = (3 << 2) + (7 - 2)  
    r1 = (2 ** 4) - 3
    
    p2 = (5 << 2) + 3
    r2 = (3 * 3) - 2
    
    p3 = (6 << 1) - 1
    r3 = (2 * 3) - 1
    
    # Range constraints
    lower = (10 ** 3)
    upper = lower * (5 * 2)
    
    # Multiple simultaneous checks
    c1 = (x % p1) == r1
    c2 = (x % p2) == r2
    c3 = (x % p3) == r3
    c4 = x > lower and x < upper
    
    return c1 and c2 and c3 and c4
1985
1985
Proposer: claude-sonnet-4-5-20250929 Solver: grok-4
0 vs 1
#7 Solved
def mystery(x):
    if not isinstance(x, str):
        return False

    # Obfuscated key construction
    k1 = (10 ** 2) + (8 - 1)
    k2 = k1 - (3 + 3)
    k3 = (11 ** 2)
    key_str = ''.join(chr(k) for k in [k1, k2, k3])

    # Obfuscated target construction
    t1 = (100 - 1)
    t2 = (100 + 5)
    t3 = (100 - 3)
    t4 = t3 + 1
    t5 = t2
    t6 = (110 + 4)
    target = ''.join(chr(t) for t in [t1, t2, t3, t4, t5, t6])

    # Obfuscated parameters
    base = (10**2) - (1+1+1)
    mod = (10 + 3) * 2

    # Obfuscated lengths
    key_len = 0
    temp = key_str
    while temp:
        key_len += 1
        temp = temp[1:]

    x_len = 0
    temp_x = x
    while temp_x:
        x_len += 1
        temp_x = temp_x[1:]

    if x_len == 0:
        return False

    # Encryption loop
    result = []
    key_idx = 0
    i = 0
    while i < x_len:
        c = x[i]
        code = ord(c)
        if base <= code <= base + mod - 1:
            key_char = key_str[key_idx % key_len]
            shift = ord(key_char) - base
            new_code = (code - base + shift) % mod + base
            result.append(chr(new_code))
            key_idx += 1
        else:
            result.append(c)
        i += 1

    encrypted = ''.join(result)
    return encrypted == target
"secret"
"secret"
Proposer: grok-4 Solver: claude-sonnet-4-5-20250929
0 vs 1
#8 Sample Solution Wrong
def mystery(x):
    if not isinstance(x, int):
        return False
    
    if x <= 0:
        return False
    
    # Compute digital root through obfuscated method
    temp = x
    digit_sum = 0
    counter = 0
    while temp > 0:
        digit_sum += temp % (5 * 2)
        temp //= (5 * 2)
        counter += 1
    
    # Reduce to single digit
    while digit_sum >= (5 * 2):
        temp = digit_sum
        digit_sum = 0
        while temp > 0:
            digit_sum += temp % (5 * 2)
            temp //= (5 * 2)
    
    # Check digital root
    target_root = ((1 << 3) - 1)
    if digit_sum != target_root:
        return False
    
    # Obfuscated modular arithmetic check
    mod_val = ((1 << 2) + (1 << 1) + (1 << 0)) + (2 * 2)
    rem_val = ((1 << 2) + (1 << 0))
    if x % mod_val != rem_val:
        return False
    
    # Obfuscated range constraints  
    lower_bound = ((2 << 12) + (2 << 11)) + ((1 << 9) + (1 << 7))
    upper_bound = ((1 << 14) + (1 << 12)) + ((1 << 11) + (1 << 10))
    
    if x < lower_bound or x > upper_bound:
        return False
    
    # Additional prime factor check
    temp_x = x
    factor_count = 0
    test_divisor = 2
    while test_divisor * test_divisor <= temp_x:
        if temp_x % test_divisor == 0:
            factor_count += 1
            while temp_x % test_divisor == 0:
                temp_x //= test_divisor
        test_divisor += 1
    if temp_x > 1:
        factor_count += 1
    
    if factor_count < 2:
        return False
    
    return True
10510
Proposer: claude-sonnet-4-5-20250929 Solver: grok-4
0 vs 0
#9 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    
    # Obfuscated moduli and remainders
    p1 = ((1 << 3) - (1 << 0))
    r1 = ((1 << 2) - (1 << 0))
    
    p2 = ((5 << 1) + (1 << 0))
    r2 = (1 << 2)
    
    p3 = ((1 << 4) - (1 + 1 + 1))
    r3 = ((2 + 3) ** (1 << 0))
    
    # Obfuscated range
    exp = (1 + 1 + 1)
    lower = (5 << 1) ** exp
    factor = (1 + 1)
    upper = lower * factor
    
    # Modular checks
    if (x % p1) != r1:
        return False
    if (x % p2) != r2:
        return False
    if (x % p3) != r3:
        return False
    
    # Range check
    if not (x > lower and x < upper):
        return False
    
    # Obfuscated sum of digits
    digit_sum = 0
    temp = x
    base = 5 * (1 + 1)
    while temp > 0:
        digit_sum += temp % base
        temp //= base
    
    target_sum = (1 << 3)
    if digit_sum != target_sum:
        return False
    
    return True
1214
1214
Proposer: grok-4 Solver: claude-sonnet-4-5-20250929
0 vs 0
#10 Sample Solution Wrong
def mystery(x):
    if not isinstance(x, str):
        return False
    
    # Obfuscated length constraint
    exp_len = (1 << 2) + (1 << 1)
    actual_len = 0
    temp = x
    while temp:
        actual_len += 1
        temp = temp[1:]
    
    if actual_len != exp_len:
        return False
    
    # Polynomial rolling hash with obfuscated parameters
    h = 0
    m1 = (1 << 8) + (1 << 5) + (1 << 0)
    m2 = (1 << 10) + (1 << 3) + (1 << 1) + (1 << 0)
    
    idx = 0
    while idx < actual_len:
        c = x[idx]
        code = ord(c)
        h = (h * m1 + code) % m2
        idx += 1
    
    target_h = (1 << 7) + (1 << 6) + (1 << 5) + (1 << 4) + (1 << 0)
    
    if h != target_h:
        return False
    
    # XOR-based checksum with obfuscated target
    xor_check = 0
    pos = 0
    while pos < actual_len:
        xor_check = xor_check ^ ord(x[pos])
        pos += 1
    
    target_xor = (1 << 4) + (1 << 3) + (1 << 2) + (1 << 1)
    
    if xor_check != target_xor:
        return False
    
    # Sum of character codes check
    char_sum = 0
    i = 0
    while i < actual_len:
        char_sum += ord(x[i])
        i += 1
    
    target_sum = (1 << 9) + (1 << 8) + (1 << 7) + (1 << 6) + (1 << 4) + (1 << 2)
    
    return char_sum == target_sum
"secret"
Proposer: claude-sonnet-4-5-20250929 Solver: grok-4
0 vs -1