← All Duels

grok-4_vs_claude-opus-4-5-20251101_20260124_195837.jsonl — 10 puzzles

grok-4
-1
vs
claude-opus-4-5-20251101
0
#1 Solved
def mystery(x):
    l3 = len("abc")
    l2 = len("ab")
    r10 = 2 ** l3 + l2
    a = ''.join(str(i) for i in range(1, r10))
    b = ''.join(str(i) for i in range(r10))
    p = l3
    return x == len(a) ** p + len(b) ** p
1729
1729
Proposer: grok-4 Solver: claude-opus-4-5-20251101
0 vs 0
#2 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    def sieve(n):
        s = [True] * (n+1)
        s[0] = s[1] = False
        for i in range(2, int(n**0.5)+1):
            if s[i]:
                for j in range(i*i, n+1, i):
                    s[j] = False
        return [i for i in range(n+1) if s[i]]
    
    seq = sieve(30)[:10]
    v = 1
    for i, p in enumerate(seq):
        v = (v * p + i) % 9999
    return x == v
2079
2079
Proposer: claude-opus-4-5-20251101 Solver: grok-4
0 vs 0
#3 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    l1 = len("a")
    l2 = len("ab")
    l3 = len("abc")
    n = l3 ** l3
    count = l1 - l1
    while n > l1:
        if n % l2 == count - count:
            n = n // l2
        else:
            n = l3 * n + l1
        count = count + l1
    return x == count
111
111
Proposer: grok-4 Solver: claude-opus-4-5-20251101
0 vs 0
#4 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    
    s = "LABYRINTH"
    p = 1
    for i, c in enumerate(s):
        p = (p * (ord(c) - 64) + i * i) % 10000
    
    return x == p
696
696
Proposer: claude-opus-4-5-20251101 Solver: grok-4
0 vs 0
#5 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    l1 = len("a")
    l2 = len("ab")
    l10 = len("abcdefghij")
    n = l10 ** l2
    k = n // l2
    res = l1
    for i in range(l1, k + l1):
        res = (res * (n - i + l1)) // i
    return x == res
100891344545564193334812497256
100891344545564193334812497256
Proposer: grok-4 Solver: claude-opus-4-5-20251101
0 vs 0
#6 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    
    p = 1
    for i in range(1, 8):
        p = (p * i * i + i) % 9999
    
    q = sum(int(d) ** 3 for d in str(p))
    
    return x == p * 10 + q
29765
29765
Proposer: claude-opus-4-5-20251101 Solver: grok-4
0 vs 0
#7 Sample Solution Wrong
def mystery(x):
    if not isinstance(x, int):
        return False
    l1 = len("a")
    l2 = len("ab")
    l3 = len("abc")
    l10 = len("abcdefghij")
    sub = l10 ** l2 + l10 * l2 + l3 ** l2
    n = l10 ** l3 - sub
    count = l1 - l1
    while n > l1:
        if n % l2 == 0:
            n = n // l2
        else:
            n = l3 * n + l1
        count += l1
    return x == count
179
Proposer: grok-4 Solver: claude-opus-4-5-20251101
-1 vs 0
#8 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    
    # Build a sequence using a recurrence relation
    c = [1, 1]
    for n in range(2, 10):
        c.append(sum(c[i] * c[n-1-i] for i in range(n)) % 9973)
    
    # Combine values using polynomial-like evaluation
    v = 0
    for i in range(len(c)):
        v = (v * 37 + c[i]) % 99991
    
    return x == v
96783
96783
Proposer: claude-opus-4-5-20251101 Solver: grok-4
-1 vs 0
#9 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    l3 = len("abc")
    l5 = len("abcde")
    l10 = len("abcdefghij")
    nth = l10 ** l3 * l5
    lim = l10 ** l5
    s = [True] * (lim + 1)
    s[0] = s[1] = False
    for i in range(2, int(lim ** 0.5) + 1):
        if s[i]:
            for j in range(i * i, lim + 1, i):
                s[j] = False
    p = [i for i in range(lim + 1) if s[i]]
    return x == p[nth - 1]
48611
48611
Proposer: grok-4 Solver: claude-opus-4-5-20251101
-1 vs 0
#10 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    
    # Pentagonal numbers sequence
    p = [n * (3*n - 1) // 2 for n in range(1, 15)]
    
    v = 1
    for i, pn in enumerate(p):
        v = (v * pn + i * i) % 99991
    
    return x == v
73724
73724
Proposer: claude-opus-4-5-20251101 Solver: grok-4
-1 vs 0