← All Duels

gpt-5.2-pro-2025-12-11_vs_gemini-2.5-pro_20260125_005422.jsonl — 10 puzzles

gpt-5.2-pro-2025-12-11
-1
vs
gemini-2.5-pro
-5
#1 Sample Solution Wrong
def mystery(x):
    import hmac
    import hashlib

    # Normalize input to a plain ASCII string (numbers are allowed but unlikely to match).
    if isinstance(x, (bytes, bytearray, memoryview)):
        try:
            s = bytes(x).decode("utf-8", "strict")
        except Exception:
            return False
    else:
        s = x if isinstance(x, str) else str(x)

    s = s.strip().replace("\u200b", "")  # remove zero-width spaces too
    if len(s) != 24:
        return False
    try:
        b = s.encode("ascii", "strict")
    except Exception:
        return False

    # A couple of cheap decoys/filters.
    if any(c in b"\r\n\t" for c in b):
        return False
    if b.count(b"{") != 1 or b.count(b"}") != 1 or not (b.find(b"{") < b.find(b"}")):
        return False

    n = 24

    # Stage 1: XOR mask
    enc = bytes((b[i] ^ 0xAA) for i in range(n))

    # Stage 2: permutation (a full cycle because gcd(7, 24) == 1)
    scr = bytes(enc[(i * 7) % n] for i in range(n))

    # Stage 3: invertible bytewise affine/XOR mix
    fin = bytes(
        ((((scr[i] + ((i * 17 + 23) & 0xFF)) & 0xFF) ^ ((i * 41 + 99) & 0xFF)) & 0xFF)
         for i in range(n))
    )

    # Target is stored as one big integer to reduce obvious structure.
    target = int(
        "618CB9D1410F18F6C95A648597915E151A13625AAA9EA771",
        16
    ).to_bytes(n, "big")

    # Extra (redundant) digest check to punish "close" guesses.
    d_fin = hashlib.blake2s(fin, digest_size=16, person=b"mystery!").digest()
    d_tgt = hashlib.blake2s(target, digest_size=16, person=b"mystery!").digest()

    return hmac.compare_digest(d_fin, d_tgt) and hmac.compare_digest(fin, target)
"ALPHA{tricky_python_xor}"
Proposer: gpt-5.2-pro-2025-12-11 Solver: gemini-2.5-pro
-1 vs 0
#2 Sample Solution Wrong
def mystery(x):
    """
    Find the value of x that makes this function return True.
    Note: This puzzle requires the 'ecdsa' library. You may need to install it
    (e.g., `pip install ecdsa`).
    """
    # Standard library imports
    import hashlib

    # Input validation and normalization
    if not isinstance(x, str):
        return False
    # The length check is a genuine constraint.
    if not (10 < len(x) < 40):
        return False
    try:
        x_bytes = x.encode('utf-8')
    except UnicodeEncodeError:
        return False

    # A decoy transformation. This part is designed to mislead the solver.
    # It mimics the RC4 key-scheduling algorithm (KSA) to generate a permutation.
    state = list(range(256))
    j = 0
    for i in range(256):
        j = (j + state[i] + x_bytes[i % len(x_bytes)]) % 256
        state[i], state[j] = state[j], state[i]
    # The 'state' variable is a permutation based on the input x, but it is
    # deliberately never used again. This is a red herring.

    # The actual secret transformation starts here.
    # Stage 1: First-level hash of the input string.
    s1 = hashlib.sha256(x_bytes).digest()

    # Stage 2: Combine the result with a secret "pepper".
    # The value and placement of this pepper are part of the puzzle.
    pepper = bytes.fromhex("1a2b3c4d")
    s2 = s1 + pepper

    # Stage 3: Second-level hash to get the private key candidate.
    private_key_bytes = hashlib.sha256(s2).digest()
    private_key_int = int.from_bytes(private_key_bytes, 'big')

    # This puzzle relies on elliptic curve cryptography.
    try:
        import ecdsa
    except ImportError:
        # If the library isn't installed, the puzzle can't be solved.
        # This prevents the program from crashing.
        return False

    # We use the secp256k1 curve (the same one used by Bitcoin).
    curve = ecdsa.SECP256k1
    G = curve.generator
    n = curve.order

    # The derived integer must be a valid private key (i.e., in the range [1, n-1]).
    if not (0 < private_key_int < n):
        return False

    # This is the core one-way operation: generating a public key from a private key.
    # It is computationally infeasible to reverse this step.
    public_key_point = private_key_int * G

    # The target public key coordinates, which the solver must match.
    TARGET_X = 0x76d8929e71672c1a826886aca955a29a28862973873323086b6ce44033b0b53c
    TARGET_Y = 0x2287239324545300f8c558c42410a56805096520627771330369888510848612

    # The final check: does the public key derived from x match the target?
    return public_key_point.x() == TARGET_X and public_key_point.y() == TARGET_Y
"The moon is a harsh mistress."
Proposer: gemini-2.5-pro Solver: gpt-5.2-pro-2025-12-11
-1 vs -1
#3 Sample Solution Wrong
def mystery(x):
    import unicodedata
    import hashlib
    import hmac
    import zlib
    import base64

    def _recover_expected_bytes():
        # Stored as a single integer to reduce obvious string structure.
        ct = int(
            "c1d3f092f89ddce0e4fa9ec29bc7fe9c8793d999cc879adb98c9",
            16,
        ).to_bytes(26, "big")

        n = 26
        pt = bytearray(n)
        # Inverse of: ct[i] = pt[(i*7)%n] ^ 0xAA
        for i in range(n):
            j = (i * 7) % n
            pt[j] = ct[i] ^ 0xAA
        return bytes(pt)

    def _norm_to_ascii_bytes(v):
        if isinstance(v, (bytes, bytearray, memoryview)):
            try:
                s = bytes(v).decode("utf-8", "strict")
            except Exception:
                return None
        elif isinstance(v, str):
            s = v
        else:
            # Numbers allowed, but extremely unlikely to match.
            s = str(v)

        # Normalize and remove some invisible characters that could "look right".
        s = unicodedata.normalize("NFKC", s)
        s = s.strip().replace("\u200b", "").replace("\ufeff", "")

        try:
            b = s.encode("ascii", "strict")
        except Exception:
            return None
        return b

    exp = _recover_expected_bytes()
    cand = _norm_to_ascii_bytes(x)
    if cand is None:
        return False

    # Structural gates (mostly decoys; they just narrow the search space).
    if len(cand) != 26:
        return False
    if cand.count(b"-") != 2:
        return False
    if not (cand[8:9] == b"-" and cand[17:18] == b"-"):
        return False
    for i, ch in enumerate(cand):
        if i in (8, 17):
            continue
        if not (48 <= ch <= 57 or 65 <= ch <= 90 or 97 <= ch <= 122):
            return False

    # Red herring: spend time on something that doesn't directly reveal the secret.
    _ = hashlib.pbkdf2_hmac("sha256", cand, b"mystery-salt", 2048, dklen=32)

    # Extra equivalence checks (redundant if you already know the expected value).
    if zlib.crc32(cand) != zlib.crc32(exp):
        return False

    def _mix(b):
        # Deterministic "mix" to make simple equality less obvious.
        t = zlib.compress(b, 9)
        t = hashlib.sha256(t).digest()
        t = base64.b85encode(t)
        return hashlib.blake2s(t, digest_size=16, person=b"mystery.mx").digest()

    if not hmac.compare_digest(_mix(cand), _mix(exp)):
        return False

    # Final exact match.
    return hmac.compare_digest(cand, exp)
"k6R3Nq1y-7fP2mZ9v-4cT8sJ0h"
Proposer: gpt-5.2-pro-2025-12-11 Solver: gemini-2.5-pro
-2 vs -1
#4 Sample Solution Wrong
def mystery(x):
    """
    Find the string x for which this function returns True.
    The path you choose determines the world you must travel.
    """
    import zlib
    import hmac
    import math  # A decoy import

    # --- Input validation and normalization ---
    if not isinstance(x, str):
        return False
    if not (20 < len(x) < 100):
        return False
    try:
        x_bytes = x.encode('ascii')
    except UnicodeEncodeError:
        return False
    if not all(c in 'UDLR' for c in x):
        return False

    # --- A decoy calculation ---
    # This function seems important but its result is not used for the final decision.
    # It's intended to make the solver analyze the numerical properties of the input length.
    def _calculate_geometric_series(n):
        # A simple calculation wrapped in a complex-looking shell.
        a = 1.0 / (n + 1)
        r = 1.0 - a
        # Sum of infinite geometric series: a / (1 - r)
        return a / (1.0 - r)  # This will always be 1.0

    _useless_value = _calculate_geometric_series(len(x))
    # A check that is almost always true for float arithmetic.
    if not math.isclose(_useless_value, 1.0):
        return False  # Highly unlikely path

    # --- The core puzzle logic ---

    # The maze's layout depends on a "seed" derived from the input path itself.
    # This is the crucial twist: the path must be valid for the maze it generates.
    magic_seed = zlib.crc32(x_bytes) % 10000

    # The maze is a 20x20 grid. The walls are determined by a pseudo-random
    # but deterministic function based on the seed.
    def _is_obstacle(px, py):
        # Check boundaries first.
        if not (0 <= px < 20 and 0 <= py < 20):
            return True
        
        # This formula generates the maze layout. It looks chaotic, but it is
        # deterministic for a given seed. It's a linear congruential generator (LCG)
        # combined with some bitwise operations to make it appear more complex.
        val = (px * 31 + py * 17 + magic_seed) & 0xFFFFFFFF
        val = (val * 1664525 + 1013904223) & 0xFFFFFFFF
        val = (val >> 16) ^ val
        
        # Approximately 30% of the grid cells are obstacles.
        return (val % 10) < 3

    # Simulate the path traversal.
    start_pos = (1, 1)
    end_pos = (18, 18)
    
    # The starting point cannot be an obstacle.
    if _is_obstacle(start_pos[0], start_pos[1]):
        return False
        
    current_x, current_y = start_pos
    
    for move in x:
        if move == 'U':
            current_y -= 1
        elif move == 'D':
            current_y += 1
        elif move == 'L':
            current_x -= 1
        elif move == 'R':
            current_x += 1
        
        if _is_obstacle(current_x, current_y):
            return False  # The path hit an obstacle.

    # Final check: did the path end at the correct location?
    # We use hmac.compare_digest on the string representation to avoid
    # timing attacks on the final coordinates, adding a layer of professional-looking
    # but ultimately simple comparison.
    final_pos_str = f"({current_x}, {current_y})".encode('ascii')
    target_pos_str = f"({end_pos[0]}, {end_pos[1]})".encode('ascii')

    return hmac.compare_digest(final_pos_str, target_pos_str)
'RRRRRRRRRRRRRRRRRDDDDDDDDDDDDDDDDD'
Proposer: gemini-2.5-pro Solver: gpt-5.2-pro-2025-12-11
-2 vs -2
#5 Sample Solution Wrong
def mystery(x):
    import unicodedata
    import hashlib
    import hmac

    # ---------- normalization ----------
    if isinstance(x, (bytes, bytearray, memoryview)):
        try:
            s = bytes(x).decode("utf-8", "strict")
        except Exception:
            return False
    elif isinstance(x, str):
        s = x
    else:
        # numbers are allowed but not intended
        s = str(x)

    s = unicodedata.normalize("NFKC", s).strip().lower()
    # remove a few invisible/spacing characters that might "look" identical
    for ch in ("\u200b", "\ufeff", " ", "\t", "\r", "\n"):
        s = s.replace(ch, "")

    # must be lowercase hex, fixed length
    if len(s) != 48:
        return False
    hexd = set("0123456789abcdef")
    if any(c not in hexd for c in s):
        return False

    try:
        cand = bytes.fromhex(s)
    except Exception:
        return False
    if len(cand) != 24:
        return False

    # ---------- cheap structural gates (not the real secret) ----------
    if (sum(cand) % 251) != 53:
        return False
    xorb = 0
    for b in cand:
        xorb ^= b
    if xorb != 0x12:
        return False

    # decoy work (time sink, doesn't decide anything)
    _ = hashlib.pbkdf2_hmac("sha256", cand, b"decoy-salt", 750, dklen=32)

    # ---------- recover the hidden expected plaintext (24 bytes) ----------
    def _recover_expected_plain():
        n = 24
        # Stored as a single integer (looks like random bytes).
        packed = int("c2ed8592e1507e273094e598a0440165142de4db92ad703a", 16).to_bytes(n, "big")

        def k(i):
            return (((i * 29 + 7) & 0xFF) ^ 0xAA)

        pt = bytearray(n)
        for i in range(n):
            j = (i * 5) % n
            pt[j] = packed[i] ^ k(i)
        return bytes(pt)

    # ---------- an invertible 24-byte Feistel cipher ----------
    def _sbox():
        # Deterministic, but not an obvious "table in code".
        if hasattr(_sbox, "_cache"):
            return _sbox._cache

        seed = b"mystery.sbox.v1"
        pool = list(range(256))
        ctr = 0
        # Fisher-Yates with pseudo-random bytes from SHA-256 chaining.
        for i in range(255, 0, -1):
            blob = hashlib.sha256(seed + ctr.to_bytes(4, "big")).digest()
            ctr += 1
            j = blob[i % 32] % (i + 1)
            pool[i], pool[j] = pool[j], pool[i]

        _sbox._cache = bytes(pool)
        return _sbox._cache

    def _F(r12, rk12):
        sb = _sbox()
        t = bytearray(12)
        for i in range(12):
            v = r12[i] ^ rk12[i]
            v = sb[v]
            v = (v + sb[(rk12[i] + i) & 0xFF]) & 0xFF
            if i & 1:
                v = ((v >> 3) | ((v << 5) & 0xFF)) & 0xFF
            else:
                v = ((v << 3) | (v >> 5)) & 0xFF
            t[i] = v

        # lightweight diffusion
        for _round in range(2):
            prev = t[-1]
            for i in range(12):
                t[i] ^= prev
                prev = t[i]
        return bytes(t)

    def _enc24(block24):
        if len(block24) != 24:
            raise ValueError("need 24 bytes")
        L = block24[:12]
        R = block24[12:]

        person = b"mystery.game"  # <=16 bytes
        for rnd in range(10):
            rk = hashlib.blake2s(b"rk" + bytes([rnd]) + b"/v1", digest_size=12, person=person).digest()
            f = _F(R, rk)
            L, R = R, bytes(a ^ b for a, b in zip(L, f))
        return L + R

    exp_plain = _recover_expected_plain()
    exp_cipher = _enc24(exp_plain)
    cand_cipher = _enc24(cand)

    return hmac.compare_digest(cand_cipher, exp_cipher)
'6f62667573636174696f6e5f69735f66756e5f323032365f'
Proposer: gpt-5.2-pro-2025-12-11 Solver: gemini-2.5-pro
-3 vs -2
#6 Sample Solution Wrong
import hashlib
import hmac

def mystery(x):
    """
    Find the string x for which this function returns True.
    This machine awaits its instructions.
    """
    # --- Input Validation ---
    if not isinstance(x, str):
        return False
    
    # The set of valid characters (opcodes) for our little machine.
    # This serves as a hint to the nature of the puzzle.
    valid_opcodes = set("0123456789abcdef+-*^DPS?().H")
    if any(c not in valid_opcodes for c in x):
        return False

    # A decoy calculation to make the solver waste time. This uses the
    # length of the program, suggesting it might be significant.
    if len(x) > 0:
        _ = pow(len(x), 31, 11111)

    # --- The Virtual Machine ---
    stack = []
    output = bytearray()
    ip = 0 # Instruction Pointer
    max_steps = 2000 # Prevent infinite loops

    # The machine's instruction set is defined here.
    # Reversing this is the first step of the puzzle.
    ops = {
        # Stack manipulation
        'D': lambda s: s.append(s[-1]),
        'P': lambda s: s.pop(),
        'S': lambda s: s.extend([s.pop(), s.pop()]),
        # Arithmetic
        '+': lambda s: s.append(s.pop() + s.pop()),
        '-': lambda s: s.append(-s.pop() + s.pop()),
        '*': lambda s: s.append(s.pop() * s.pop()),
        '^': lambda s: s.append(s.pop() ^ s.pop()),
        # Output
        '.': lambda s: output.append(s.pop() & 0xFF),
    }

    try:
        for _ in range(max_steps):
            if ip >= len(x):
                break # Program ended without halting cleanly
            
            char = x[ip]

            if '0' <= char <= '9':
                stack.append(int(char))
            elif 'a' <= char <= 'f':
                stack.append(ord(char) - ord('a') + 10)
            elif char == 'H': # Halt
                break
            elif char == '?': # Conditional skip
                if stack.pop() == 0:
                    ip += 1
            elif char == '(': # Loop start (a red herring for the intended solution)
                if stack[-1] == 0:
                    balance = 1
                    ip += 1
                    while ip < len(x) and balance > 0:
                        if x[ip] == '(': balance += 1
                        if x[ip] == ')': balance -= 1
                        ip += 1
                    ip -= 1
            elif char == ')': # Loop end (also a red herring)
                if stack[-1] != 0:
                    balance = 1
                    ip -= 1
                    while ip >= 0 and balance > 0:
                        if x[ip] == ')': balance += 1
                        if x[ip] == '(': balance -= 1
                        ip -= 1
            elif char in ops:
                ops[char](stack)
            
            ip += 1
        else:
            # Loop finished due to max_steps
            return False

    except (IndexError, TypeError):
        # Program crashed (e.g., popping from empty stack)
        return False
    
    # --- The Final Check ---
    # The solver must discover what the target hash is.
    # The key is hidden here as large integers.
    k1 = 0x746865206b657920
    k2 = 0x697320696e207468
    k3 = 0x6520636f6465

    # Reconstruct the key from the parts.
    key_bytes = k1.to_bytes(8, 'big') + k2.to_bytes(8, 'big') + k3.to_bytes(8, 'big')
    
    # The actual target hash.
    target_digest = hashlib.sha1(key_bytes).digest()

    return hmac.compare_digest(output, target_digest)
"af1+*5+.3f1+*3+.af1+*3+.2f1+*2+.cf1+*3+.7f1+*d+.8f1+*b+.5f1+*c+.2f1+*3+.2f1+*+.af1+*1+.cf1+*1+.7f1+*2+.9f1+*c+.1f1+*8+.5f1+*d+.8f1+*3+.ff1+*6+.bf1+*+.8f1+*7+.H"
Proposer: gemini-2.5-pro Solver: gpt-5.2-pro-2025-12-11
-3 vs -3
#7 Solver Failed
def mystery(x):
    import unicodedata
    import hashlib
    import hmac
    import zlib

    # -------- normalization (strings / bytes / numbers allowed) --------
    if isinstance(x, (bytes, bytearray, memoryview)):
        try:
            s = bytes(x).decode("utf-8", "strict")
        except Exception:
            return False
    elif isinstance(x, str):
        s = x
    else:
        s = str(x)

    s = unicodedata.normalize("NFKC", s).strip()
    # strip a few "invisible" troublemakers
    for ch in ("\u200b", "\ufeff", "\u2060"):
        s = s.replace(ch, "")

    try:
        b = s.encode("ascii", "strict")
    except Exception:
        return False

    # -------- structural gates --------
    if len(b) != 26:
        return False
    if b[8:9] != b"-" or b[17:18] != b"-":
        return False
    if b.count(b"-") != 2:
        return False
    for i, ch in enumerate(b):
        if i in (8, 17):
            continue
        if not (48 <= ch <= 57 or 65 <= ch <= 90 or 97 <= ch <= 122):
            return False

    # "plausible" checksum-y gates (tighten the search space)
    upper = sum(1 for c in b if 65 <= c <= 90)
    digits = sum(1 for c in b if 48 <= c <= 57)
    if upper != 6 or digits != 7:
        return False
    if (sum(b) % 251) != 143:
        return False
    xorb = 0
    for c in b:
        xorb ^= c
    if xorb != 0x49:
        return False

    # -------- decoy work (doesn't directly reveal the target) --------
    _ = hashlib.pbkdf2_hmac("sha256", b, b"mystery.decoy.salt", 1600, dklen=32)
    if zlib.crc32(b) == 0:  # essentially never true for valid ASCII inputs here
        return False

    # -------- core transform --------
    def _enc(block):
        n = 26

        # step 1: xor mask that depends on position
        q = bytes((block[i] ^ ((17 * i + 43) & 0xFF)) for i in range(n))

        # step 2: full-cycle permutation (gcd(7,26)=1)
        r = bytes(q[(i * 7) % n] for i in range(n))

        # step 3: second position-dependent xor
        c = bytes((r[i] ^ ((0xA5 + 11 * i) & 0xFF)) for i in range(n))
        return c

    target = bytes.fromhex(
        "fc23fa63e968860cf6de77f8ca0f1646cb33a14617ed39763eb8"
    )

    return hmac.compare_digest(_enc(b), target)
"S0lv3d-by-r3v3rs1ng-CrYpt0"`
"r0undTr1-pC0d3XyZ-9nV5kLm2"
Proposer: gpt-5.2-pro-2025-12-11 Solver: gemini-2.5-pro
-2 vs -3
#8 Sample Solution Wrong
def mystery(x):
    """
    Find the program string x that makes this machine's output match the target.
    """
    import hmac
    import hashlib

    # --- Input Validation and Normalization ---
    if not isinstance(x, str):
        return False
    
    # The set of valid characters (opcodes) for our little machine.
    valid_opcodes = set("><v^+-.,@?#X")
    if any(c not in valid_opcodes for c in x):
        return False
    
    # A basic length check to filter out trivial inputs.
    if not (100 < len(x) < 500):
        return False

    # --- Decoy Calculation ---
    # This calculation is performed on the input program but its result is not
    # used in the final comparison. It's designed to suggest that properties
    # of the program string itself (beyond its execution) are important.
    _ = hashlib.pbkdf2_hmac("sha256", x.encode('ascii', 'ignore'), b"decoy-grid-salt", 1024)

    # --- The Grid Painter Virtual Machine ---
    # This VM operates on a 16x16 grid of bytes.
    grid = [[0] * 16 for _ in range(16)]
    px, py, v = 0, 0, 0  # Pointer X, Pointer Y, Value register
    ip = 0              # Instruction Pointer
    max_steps = 8192    # Safety break to prevent infinite loops

    try:
        for _ in range(max_steps):
            if ip >= len(x) or x[ip] == '@': # Halt instruction
                break
            
            char = x[ip]
            # Pointer movement (wraps around)
            if char == '>': px = (px + 1) % 16
            elif char == '<': px = (px - 1) % 16
            elif char == 'v': py = (py + 1) % 16
            elif char == '^': py = (py - 1) % 16
            # Value manipulation
            elif char == '+': v = (v + 1) % 256
            elif char == '-': v = (v - 1) % 256
            # Grid interaction
            elif char == '.': grid[py][px] = v  # Paint cell
            elif char == ',': v = grid[py][px]  # Read cell
            # Decoy opcodes (fully implemented but not needed for the solution)
            elif char == 'X': v ^= grid[py][px]
            elif char == '?':
                if v == 0: ip += 1 # Skip next instruction if v is zero
            # '#' is a no-op, useful for comments or spacing in a program
            
            ip += 1
        else:
            # The loop finished due to max_steps, not a clean halt.
            return False
    except IndexError: # Should not happen with the length check, but for safety.
        return False

    # --- Final Check: Obfuscated Grid Comparison ---
    # The final grid state is not compared directly. It is first put through
    # an invertible transformation to obscure the target pattern.

    def _transform(block):
        # This function deterministically scrambles the 256 bytes of the grid.
        n = 256
        # Stage 1: A bytewise permutation. The multiplier is coprime to 256.
        permuted = bytes(block[(i * 51) % n] for i in range(n))
        # Stage 2: A position-dependent XOR mask.
        final = bytes(permuted[i] ^ ((i * 13 + 37) & 0xFF) for i in range(n))
        return final

    # Serialize the 2D grid into a flat 256-byte string.
    flat_grid = bytes(c for row in grid for c in row)
    
    # Transform the machine's output.
    candidate_transformed = _transform(flat_grid)

    # The target is stored as a single hex string to hide its structure.
    target_hex = '1849646b5a383d47f02758172c36217e53063f11d4d3ee12e79685e1329a98b4617a99f344828fccb5d1b69f60f5c3ef4814c489771aee5d0a6907621f7710352a451152a6530c279b2275f00e3068c5195e5bde8a6846b9b1723e8c240195b3531b7828c4eab9f97d5190a07e2c83a7531f8d9a2629b7c15b0ce643bda1e56b4603e5c70f81d4c2b9f9e29381ea37160714251d3b0c031a0833a69a0319b08462a6b28b7e23737b60066f69557966427a7c5b6e6345727b405553684a5f70435c6b4e'
    target = bytes.fromhex(target_hex)

    # Constant-time comparison to prevent timing attacks.
    return hmac.compare_digest(candidate_transformed, target)
'++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++>>>>>vvvvv.>.>.>.>.<<<<v.>>>>.<<<<v.>>>>.<<<<v.>>>>.<<<<v.>.>.>.>.@'
Proposer: gemini-2.5-pro Solver: gpt-5.2-pro-2025-12-11
-2 vs -4
#9 Solver Failed
def mystery(x):
    import unicodedata
    import hashlib
    import hmac

    # ---------- normalize input to ASCII bytes ----------
    if isinstance(x, (bytes, bytearray, memoryview)):
        try:
            s = bytes(x).decode("utf-8", "strict")
        except Exception:
            return False
    elif isinstance(x, str):
        s = x
    else:
        s = str(x)

    s = unicodedata.normalize("NFKC", s).strip()
    for ch in ("\u200b", "\ufeff", "\u2060"):  # invisible troublemakers
        s = s.replace(ch, "")

    try:
        b = s.encode("ascii", "strict")
    except Exception:
        return False

    # ---------- structural gates ----------
    # Format: XXXXX-XXXXX-XXXXX-XXXXX-XXXXX  (29 bytes)
    if len(b) != 29:
        return False
    if b.count(b"-") != 4:
        return False
    if not (b[5:6] == b[11:12] == b[17:18] == b[23:24] == b"-"):
        return False

    letters = digits = 0
    for i, ch in enumerate(b):
        if i in (5, 11, 17, 23):
            continue
        if 48 <= ch <= 57:
            digits += 1
        elif 65 <= ch <= 90:
            letters += 1
        else:
            return False

    # tight-ish but not extreme: 25 payload chars total
    if not (letters == 15 and digits == 10):
        return False

    # checksum-y gates
    if (sum(b) % 251) != 28:
        return False
    xorb = 0
    for ch in b:
        xorb ^= ch
    if xorb != 0x41:
        return False

    # ---------- decoy work (not part of the secret) ----------
    # (Looks expensive/meaningful, but doesn't help you unless you already have the right b.)
    _ = hashlib.pbkdf2_hmac("sha256", b, b"mystery.decoy.salt.v2", 1200, dklen=32)
    # another decoy: a "mathy" branch that always accepts here
    if int.from_bytes(hashlib.blake2s(b, digest_size=4).digest(), "big") >= (1 << 32):
        return False

    # ---------- recover expected value ----------
    def _recover_expected():
        n = 29
        # stored as one big integer to avoid obvious plaintext structure
        ct = int(
            "e50c41b8feb02479b8d6e3f1d2056146a1f02f67788bd6fdccf53461a0",
            16,
        ).to_bytes(n, "big")

        key = bytes([0xA3, 0x5C, 0x1F, 0xD4, 0x88])

        exp = bytearray(n)
        for i in range(n):
            mask = (i * 11 + 7) & 0xFF
            exp[i] = ct[i] ^ key[i % len(key)] ^ mask
        return bytes(exp)

    exp = _recover_expected()

    # final constant-time match
    return hmac.compare_digest(b, exp)
"ENC4C-RYP7T-0GRAP-HY1S8-UNFUN"
"ABCDE-12345-FGHIJ-67890-KLMNO"
Proposer: gpt-5.2-pro-2025-12-11 Solver: gemini-2.5-pro
-1 vs -4
#10 Sample Solution Wrong
def mystery(x):
    """
    Find the input string x that makes this function return True.
    The fate of this small world depends on your initial move.
    """
    import hmac
    import zlib

    GRID_SIZE = 12
    GENERATIONS = 12
    
    # --- Input Parsing and Validation ---
    # The input string 'x' defines the initial set of live cells on the grid.
    # Format is expected to be "row,col;row,col;..."
    if not isinstance(x, str):
        return False
    
    try:
        initial_state = set()
        # Allow empty input for a blank grid
        if x:
            parts = x.split(';')
            for part in parts:
                r_str, c_str = part.split(',')
                r, c = int(r_str), int(c_str)
                if not (0 <= r < GRID_SIZE and 0 <= c < GRID_SIZE):
                    return False # Out of bounds coordinate
                initial_state.add((r, c))
    except (ValueError, IndexError):
        return False # Malformed input string

    # --- A decoy calculation ---
    # This suggests the raw string properties of x are important. They are not.
    # It's a time sink to distract from the core simulation logic.
    if len(x) > 0:
        _ = pow(zlib.crc32(x.encode('ascii', 'ignore')), 3, 99999)

    # --- Conway's Game of Life Simulation ---
    # The grid has toroidal (wrapping) boundaries.
    live_cells = initial_state
    for _ in range(GENERATIONS):
        # We only need to check cells that are live or are neighbors of live cells.
        neighbor_counts = {}
        for r, c in live_cells:
            for dr in [-1, 0, 1]:
                for dc in [-1, 0, 1]:
                    if dr == 0 and dc == 0:
                        continue
                    nr, nc = (r + dr) % GRID_SIZE, (c + dc) % GRID_SIZE
                    neighbor_counts[(nr, nc)] = neighbor_counts.get((nr, nc), 0) + 1
        
        next_live_cells = set()
        # Apply the rules of Life to all potentially active cells.
        for pos, count in neighbor_counts.items():
            is_live = pos in live_cells
            if is_live and (count == 2 or count == 3):
                next_live_cells.add(pos) # Survival
            elif not is_live and count == 3:
                next_live_cells.add(pos) # Birth
        
        live_cells = next_live_cells
        
        # A decoy check inside the loop to mislead analysis about density.
        if len(live_cells) > (GRID_SIZE * GRID_SIZE) / 2:
            return False

    # --- Final State Processing and Obfuscation ---
    def _serialize_grid(cells):
        # Convert the 12x12 grid state into 144 bits (18 bytes).
        bits = [1 if (r, c) in cells else 0 for r in range(GRID_SIZE) for c in range(GRID_SIZE)]
        byte_array = bytearray()
        for i in range(0, len(bits), 8):
            byte = 0
            for j in range(8):
                if (i + j) < len(bits):
                    byte |= bits[i+j] << (7 - j)
            byte_array.append(byte)
        return bytes(byte_array)

    def _transform(block):
        # An invertible transformation to obscure the target grid pattern.
        n = len(block)
        k = 5  # Permutation multiplier, coprime to n=18
        permuted = bytes(block[(i * k) % n] for i in range(n))
        key = b"GoL-Key"
        return bytes(permuted[i] ^ key[i % len(key)] for i in range(n))

    final_bytes = _serialize_grid(live_cells)
    candidate_transformed = _transform(final_bytes)
    
    # --- Target Comparison ---
    # The target is the transformed version of the desired final grid state.
    target_hex = "4e00507d4b0057004f0f00075d000f480000"
    target = bytes.fromhex(target_hex)

    return hmac.compare_digest(candidate_transformed, target)
"1,2;1,3;2,2;2,4;3,3;8,8;8,9;9,8;9,9"
Proposer: gemini-2.5-pro Solver: gpt-5.2-pro-2025-12-11
-1 vs -5