def mystery(x):
# Accept either strings or numbers; normalize to a deterministic byte string.
if isinstance(x, (int, float)):
s = repr(x).encode("utf-8")
elif isinstance(x, str):
s = x.encode("utf-8")
else:
return False
# A deliberately awkward, deterministic transform (no randomness).
def mix(data: bytes) -> int:
v = 0xC0FFEE123456789
for i, b in enumerate(data):
v ^= (b + 0x9E + (i * 17)) & 0xFF
v = (v * 0x100000001B3) & ((1 << 64) - 1)
v ^= (v >> 29)
v = ((v << 7) | (v >> (64 - 7))) & ((1 << 64) - 1)
v ^= (v >> 33)
return v
h = mix(s)
# Gate 1: length-related modular condition to discourage brute-forcing by short guesses.
if (len(s) * 31337 + s[0] + s[-1]) % 97 != 42:
return False
# Gate 2: bit-level pattern condition.
if ((h ^ (h >> 17) ^ (h >> 41)) & 0xFFFF) != 0xBEEF:
return False
# Gate 3: a structural constraint on the input itself.
# The byte string must have exactly one byte value appearing twice, and all others unique.
from collections import Counter
c = Counter(s)
if sorted(c.values()) != [1] * (len(c) - 1) + [2]:
return False
# Final gate: a checksum-like condition that depends on order.
acc = 0
for i, b in enumerate(s):
acc = (acc + (b * (i + 1) * 257)) % 65521
return acc == 4242
import hashlib
def mystery(x):
if isinstance(x, (int, float)):
s = repr(x)
elif isinstance(x, str):
s = x
else:
return False
key = 'abcdef'
input_str = key + s
h = hashlib.md5(input_str.encode('utf-8')).hexdigest()
if h.startswith('000000'):
return True
return False
import hashlib
import re
def mystery(x):
# normalize input
if isinstance(x, (int, float)):
s = repr(x)
elif isinstance(x, str):
s = x
else:
return False
# 1) format gate: must look like a hex-ish token with a single dash
# and obey a couple of annoying structural constraints.
if not re.fullmatch(r"[0-9a-f]{4}-[0-9a-f]{12}", s):
return False
a, b = s.split("-")
# 2) cheap checksum gate (discourages random guessing)
# (use ASCII codes, weighted by position)
acc = 0
for i, ch in enumerate(s, 1):
acc = (acc + i * ord(ch)) % 9973
if acc != 5486:
return False
# 3) hash gate: keyed SHA-256 on a transformed string, with a prefix target
key = "k9:3|"
t = (b[::-1] + ":" + a).encode("utf-8")
h = hashlib.sha256(key.encode("utf-8") + t).hexdigest()
# require a pretty sharp prefix (still solvable with some computation)
return h.startswith("00000")
import hashlib
def mystery(x):
if isinstance(x, (int, float)):
s = repr(x)
elif isinstance(x, str):
s = x
else:
return False
key = 'ckczppom'
input_str = key + s
h = hashlib.md5(input_str.encode('utf-8')).hexdigest()
if h.startswith('000000'):
return True
return False
import hashlib
import re
def mystery(x):
# normalize input to a Unicode string (numbers go through repr)
if isinstance(x, (int, float)):
s = repr(x)
elif isinstance(x, str):
s = x
else:
return False
# Gate 1: strict format (looks like a token, discourages random guessing)
# exactly 3 lowercase letters, then ".", then 5 digits, then "-", then 8 lowercase hex chars
if not re.fullmatch(r"[a-z]{3}\.[0-9]{5}-[0-9a-f]{8}", s):
return False
head, tail = s.split("-", 1)
# Gate 2: annoying checksum with mixed structure dependence
acc = 0
for i, ch in enumerate(s, 1):
acc = (acc + (i * 131 + 17) * ord(ch)) % 10007
if acc != 7777:
return False
# Gate 3: keyed SHA-256 with a sharp prefix target
# (deterministic, but computationally expensive to satisfy without knowing a solution)
key = b"v1|salt|"
msg = (tail[::-1] + "|" + head).encode("utf-8")
h = hashlib.sha256(key + msg).hexdigest()
return h.startswith("000000")
from collections import Counter
def mystery(x):
# Accept either strings or numbers; normalize to a deterministic byte string.
if isinstance(x, (int, float)):
s = repr(x).encode("utf-8")
elif isinstance(x, str):
s = x.encode("utf-8")
else:
return False
# A deliberately awkward, deterministic transform (no randomness).
def mix(data: bytes) -> int:
v = 42
for i, b in enumerate(data):
v ^= (b + i)
v = (v * 13) % 10000
return v
h = mix(s)
# Gate 1: length-related modular condition to discourage brute-forcing by short guesses.
if (len(s) * 31337 + s[0] + s[-1]) % 97 != 26:
return False
# Gate 2: bit-level pattern condition.
temp = h ^ (h // 10) ^ (h // 100)
if (temp & 255) != 223:
return False
# Gate 3: a structural constraint on the input itself.
# The byte string must have exactly one byte value appearing twice, and all others unique.
c = Counter(s)
if sorted(c.values()) != [1] * (len(c) - 1) + [2]:
return False
# Final gate: a checksum-like condition that depends on order.
acc = 0
for i, b in enumerate(s):
acc = (acc + (b * (i + 1) * 257)) % 65521
return acc == 55297
import hashlib
import re
def mystery(x):
# Normalize input
if isinstance(x, (int, float)):
s = repr(x)
elif isinstance(x, str):
s = x
else:
return False
# Gate 1: strict structure to shrink the search space but still nontrivial
# Format: 5 lowercase letters, ":", 6 digits, "/", 8 lowercase hex
if not re.fullmatch(r"[a-z]{5}:[0-9]{6}/[0-9a-f]{8}", s):
return False
left, right = s.split("/", 1) # right is 8 hex chars
word, digits = left.split(":", 1) # word is 5 letters, digits is 6 digits
# Gate 2: annoying mixed checksum (order-dependent)
acc = 0
for i, ch in enumerate(s, 1):
acc = (acc * 131 + (i * 17 + 23) * ord(ch)) % 65521
if acc != 40021:
return False
# Gate 3: keyed hash puzzle with a sharp prefix target
key = b"puz|v2|"
msg = (right + "|" + digits[::-1] + "|" + word).encode("utf-8")
h = hashlib.sha256(key + msg).hexdigest()
return h.startswith("000000")
from collections import Counter
def mystery(x):
# Accept either strings or numbers; normalize to a deterministic byte string.
if isinstance(x, (int, float)):
s = repr(x).encode("utf-8")
elif isinstance(x, str):
s = x.encode("utf-8")
else:
return False
# A deliberately awkward, deterministic transform (no randomness).
def mix(data: bytes) -> int:
v = 42
for i, b in enumerate(data):
v ^= (b + i)
v = (v * 31) % 10000
return v
h = mix(s)
# Gate 1: length-related modular condition to discourage brute-forcing by short guesses.
if (len(s) * 31337 + s[0] + s[-1]) % 97 != 26:
return False
# Gate 2: bit-level pattern condition.
temp = h ^ (h // 10) ^ (h // 100)
if (temp & 255) != 244:
return False
# Gate 3: a structural constraint on the input itself.
# The byte string must have exactly one byte value appearing twice, and all others unique.
c = Counter(s)
if sorted(c.values()) != [1] * (len(c) - 1) + [2]:
return False
# Final gate: a checksum-like condition that depends on order.
acc = 0
for i, b in enumerate(s):
acc = (acc + (b * (i + 1) * 257)) % 65521
return acc == 55297
import re
import hashlib
def mystery(x):
# normalize to string
if isinstance(x, (int, float)):
s = repr(x)
elif isinstance(x, str):
s = x
else:
return False
# Gate 1: strict but natural-looking token
# 3 lowercase letters + "-" + 4 digits + "-" + 8 lowercase hex
if not re.fullmatch(r"[a-z]{3}-[0-9]{4}-[0-9a-f]{8}", s):
return False
a, b, c = s.split("-") # a=letters, b=digits, c=hex
# Gate 2: a small congruence check (cheap filter)
tot = 0
for i, ch in enumerate(s, 1):
tot = (tot + (i * 73 + 19) * ord(ch)) % 10007
if tot != 921:
return False
# Gate 3: keyed hash condition (hard without computation)
key = b"gate|v3|"
msg = (c + "|" + b[::-1] + "|" + a).encode("utf-8")
h = hashlib.sha256(key + msg).hexdigest()
return h.startswith("0000")
from collections import Counter
def mystery(x):
# Accept either strings or numbers; normalize to a deterministic byte string.
if isinstance(x, (int, float)):
s = repr(x).encode("utf-8")
elif isinstance(x, str):
s = x.encode("utf-8")
else:
return False
# A deliberately awkward, deterministic transform (no randomness).
def mix(data: bytes) -> int:
v = 42
for i, b in enumerate(data):
v ^= (b + i)
v = (v * 31) % 10000
return v
h = mix(s)
# Gate 1: length-related modular condition to discourage brute-forcing by short guesses.
if (len(s) * 31337 + s[0] + s[-1]) % 97 != 73:
return False
# Gate 2: bit-level pattern condition.
temp = h ^ (h // 10) ^ (h // 100)
if (temp & 255) != 198:
return False
# Gate 3: a structural constraint on the input itself.
# The byte string must have exactly one byte value appearing twice, and all others unique.
c = Counter(s)
if sorted(c.values()) != [1] * (len(c) - 1) + [2]:
return False
# Final gate: a checksum-like condition that depends on order.
acc = 0
for i, b in enumerate(s):
acc = (acc + (b * (i + 1) * 257)) % 65521
return acc == 59479