import hashlib
import math
def mystery(x):
# Accept either numbers or strings; everything becomes a string for hashing.
try:
s = str(x)
except Exception:
return False
# A small "anti-trivial" gate: reject very short and very long inputs.
if not (3 <= len(s) <= 40):
return False
# Hidden target: a hash-prefix constraint that looks like "random noise"
# but is deterministic and easy to verify when you have the right input.
h = hashlib.sha256(s.encode("utf-8")).hexdigest()
# Extra obfuscation: we also compute a second digest and mix it in a weird way.
h2 = hashlib.blake2s((s[::-1] + "|" + s).encode("utf-8")).hexdigest()
# Condition: certain hex digits must match a derived pattern.
# This is deliberately crafted to look opaque.
a = int(h[:16], 16)
b = int(h2[-16:], 16)
# Mix bits and compare to a fixed-looking constant with a modular constraint.
m = (a ^ ((b << 7) & ((1 << 64) - 1)) ^ (b >> 11)) & ((1 << 64) - 1)
# Final gate: a modular equation plus a tiny constraint on the hash prefix.
return (m % 1000003 == 424242) and (h.startswith("00") and h[2] in "0123")
def mystery(x):
try:
if isinstance(x, str):
n = float(x)
else:
n = float(x)
except:
return False
if n != int(n):
return False
n = int(n)
if not (100 <= n <= 100000):
return False
# Obfuscated mathematical checks
import math
temp = int(n ** 0.5)
if temp * temp != n:
return False
s = str(n)
total = 0
for ch in s:
total += int(ch)
if total < 2:
return False
is_prime = True
for i in range(2, int(total ** 0.5) + 1):
if total % i == 0:
is_prime = False
break
return is_prime
import hashlib
import struct
def mystery(x):
# Turn any input into a stable UTF-8 byte string
try:
s = x if isinstance(x, str) else repr(x)
b = s.encode("utf-8")
except Exception:
return False
# Length gate to avoid trivial brute-force over tiny strings
if not (8 <= len(b) <= 64):
return False
# Two different digests, then fold bytes in a slightly "homemade" way
h1 = hashlib.sha256(b).digest()
h2 = hashlib.blake2s(b + b[::-1], digest_size=32).digest()
# Mix into four 64-bit lanes
a0, a1, a2, a3 = struct.unpack(">4Q", h1)
b0, b1, b2, b3 = struct.unpack(">4Q", h2)
# Obfuscated-looking reversible-ish mixing
m0 = (a0 ^ ((b1 << 13) & ((1<<64)-1)) ^ (b2 >> 7)) & ((1<<64)-1)
m1 = (a1 + b0 + 0x9E3779B97F4A7C15) & ((1<<64)-1)
m2 = (a2 ^ b3 ^ ((a3 << 17) & ((1<<64)-1))) & ((1<<64)-1)
m3 = (a3 + ((b2 << 3) & ((1<<64)-1)) + (b1 >> 19)) & ((1<<64)-1)
# Cheap "checksum" style constraints
# (Designed to look arbitrary, but deterministic)
pop = lambda u: bin(u).count("1")
score = (pop(m0) + 2*pop(m1) + 3*pop(m2) + 5*pop(m3)) % 97
# Also require a small hash-prefix pattern (hard to reason about)
hx = hashlib.sha1(b).hexdigest()
return (score == 42) and (hx.startswith("0e")) and (hx[2:6].isdigit())
def mystery(x):
s = str(x)
# Obfuscated length check
if not (len(s) * len(s) >= 49 and len(s) <= 10):
return False
# Hidden pattern check
if s != s[::-1]:
return False
# Additional obscure check
total = sum(ord(c) for c in s)
if total % 23 != 7:
return False
return True
import hashlib
import struct
def mystery(x):
# Canonicalize input so both strings and numbers are accepted.
try:
if isinstance(x, (bytes, bytearray)):
s = bytes(x).decode("utf-8", "strict")
elif isinstance(x, str):
s = x
else:
# repr() makes the exact text a bit less obvious than str()
s = repr(x)
except Exception:
return False
# Anti-trivial gate
if not (10 <= len(s) <= 40):
return False
if any(ord(c) < 32 or ord(c) > 126 for c in s):
return False
b = s.encode("utf-8")
# Two digests with different constructions
h1 = hashlib.sha256(b).digest()
h2 = hashlib.blake2s(b[::-1] + b, digest_size=32).digest()
# Unpack into lanes and mix
a0, a1, a2, a3 = struct.unpack(">4Q", h1)
b0, b1, b2, b3 = struct.unpack(">4Q", h2)
mask = (1 << 64) - 1
def rol(u, r):
r &= 63
return ((u << r) & mask) | (u >> (64 - r))
m0 = (rol(a0 ^ b3, 11) + (a2 ^ rol(b1, 7))) & mask
m1 = (rol(a1 + b0 + 0x9E3779B97F4A7C15, 17) ^ (a3 + b2)) & mask
m2 = (rol(a2 ^ b1, 29) + (a0 ^ rol(b2, 3))) & mask
m3 = (rol(a3 + b3, 43) ^ (a1 + rol(b0, 13))) & mask
pop = lambda u: bin(u).count("1")
score = (pop(m0) + 2*pop(m1) + 3*pop(m2) + 5*pop(m3)) % 101
# A secondary digest constraint that looks like "random noise"
hx = hashlib.md5(b).hexdigest()
return (score == 77) and hx.startswith("d41d8cd98f00")
def mystery(x):
s = str(x)
# Obfuscated type checking
t1 = sum(1 for c in s if 48 <= ord(c) <= 57)
t2 = sum(1 for c in s if 65 <= ord(c) <= 90 or 97 <= ord(c) <= 122)
if t1 == 0 or t2 == 0:
return False
# Obfuscated length constraint
if len(s) * len(s) < 16 or len(s) > 12:
return False
# Complex weighted checksum
val = 0
for idx in range(len(s)):
val = val + ord(s[idx]) * (idx + 1)
if val % 83 != 72:
return False
# Obscure uniqueness requirement
seen = {}
for c in s:
seen[c] = True
if len(seen) < 3:
return False
return True
import hashlib
import struct
def mystery(x):
# Canonicalize: strings are taken as-is; everything else uses repr()
try:
s = x if isinstance(x, str) else repr(x)
except Exception:
return False
# Mild anti-trivial gates
if not (6 <= len(s) <= 20):
return False
if any(ord(c) < 32 or ord(c) > 126 for c in s): # printable ASCII only
return False
b = s.encode("utf-8")
# Compute a digest that "looks random"
h = hashlib.blake2s(b, digest_size=32, person=b"mystery-game-v1").digest()
# Interpret digest as four 64-bit unsigned ints, then mix
a0, a1, a2, a3 = struct.unpack(">4Q", h)
mask = (1 << 64) - 1
def rol(u, r):
r &= 63
return ((u << r) & mask) | (u >> (64 - r))
m = (rol(a0 ^ a3, 17) + rol(a1 ^ (a2 >> 1), 9) + 0x9E3779B97F4A7C15) & mask
# Two constraints: a modular condition and a short hex-prefix pattern
hx = hashlib.sha1(b).hexdigest()
return (m % 104729 == 4242) and (hx.startswith("0e") and hx[2:8].isdigit())
def mystery(x):
try:
s = str(x)
except:
return False
# Must contain only alphanumeric and specific chars
if not all(c.isalnum() or c in ' -_' for c in s):
return False
# Length constraint (obfuscated as perfect square)
if len(s) * len(s) != 49:
return False
# Must contain at least 2 digits
if sum(1 for c in s if c.isdigit()) < 2:
return False
# Symmetric constraints (obfuscated)
if s[0] != s[-1]:
return False
if s[1] != s[-2]:
return False
# Checksum constraint
total = sum(ord(c) for c in s)
if total % 31 != 17:
return False
return True
import hashlib
import struct
def mystery(x):
# Canonicalize input
try:
s = x if isinstance(x, str) else repr(x)
except Exception:
return False
# Only printable ASCII, and fixed length to narrow the space
if len(s) != 13:
return False
if any(ord(c) < 32 or ord(c) > 126 for c in s):
return False
b = s.encode("utf-8")
# Obfuscated-but-deterministic constraints using a keyed hash
h = hashlib.blake2s(b, digest_size=32, person=b"mystery-game-v2").digest()
a, c, d, e = struct.unpack(">4Q", h)
mask = (1 << 64) - 1
def rol(u, r):
r &= 63
return ((u << r) & mask) | (u >> (64 - r))
# Mix lanes
m0 = (rol(a ^ d, 19) + (c ^ (e >> 7)) + 0x9E3779B97F4A7C15) & mask
m1 = (rol(c + e, 31) ^ (a + (d >> 3))) & mask
# Extra "looks random" constraint based on another hash
sha = hashlib.sha256(b).digest()
tag = struct.unpack(">I", sha[:4])[0] # 32-bit tag
# Combined gates (sparse, hard to reason about without trying candidates)
return (m0 % 1000003 == 742391) and (m1 & 0xFFFF == 0xBEEF) and (tag % 65521 == 31337)
def mystery(x):
try:
if isinstance(x, str):
n = float(x)
else:
n = float(x)
except:
return False
if n != int(n):
return False
n = int(n)
if not (1000 <= n <= 999999):
return False
# Obfuscated digit sum check
digit_sum = sum(int(d) for d in str(n))
if digit_sum % 7 != 0:
return False
# Hidden divisibility requirement
if n % 11 != 0:
return False
# Product constraint (anti-trivial)
prod = 1
for d in str(n):
prod *= int(d)
if prod < 10:
return False
return True