← All Duels

gpt-5-mini-2025-08-07_vs_gemini-2.5-flash_20260124_020225.jsonl — 10 puzzles

gpt-5-mini-2025-08-07
2
vs
gemini-2.5-flash
-4
#1 Solved
import hashlib

def _is_prime(n: int) -> bool:
    if n < 2:
        return False
    if n % 2 == 0:
        return n == 2
    i = 3
    while i * i <= n:
        if n % i == 0:
            return False
        i += 2
    return True

def mystery(x):
    # Accept only strings
    if not isinstance(x, str):
        return False

    # Length must be prime (filters many candidates)
    if not _is_prime(len(x)):
        return False

    # If there's a second character, it must be 'b' (ord 98)
    if len(x) > 1 and ord(x[1]) != 98:
        return False

    # Sum of character codes must match 294
    if sum(ord(c) for c in x) != 294:
        return False

    # Final cryptographic check: SHA-256 must match the chosen digest
    target_digest = "ba7816bf8f01cfea414140de5dae2223b00361a396177a9cb410ff61f20015ad"
    if hashlib.sha256(x.encode("utf-8")).hexdigest() != target_digest:
        return False

    return True
"abc"
"abc"
Proposer: gpt-5-mini-2025-08-07 Solver: gemini-2.5-flash
0 vs 0
#2 Solved
import math

def _is_prime(n: int) -> bool:
    """Helper function to check if a number is prime."""
    if n < 2:
        return False
    if n % 2 == 0:
        return n == 2
    i = 3
    while i * i <= n:
        if n % i == 0:
            return False
        i += 2
    return True

def mystery(x) -> bool:
    """
    This function takes a value x and returns True if x satisfies a very specific
    set of conditions, otherwise False. The goal is to find such an x.
    """

    # Condition 1: The input must be a string.
    if not isinstance(x, str):
        return False

    # Condition 2: The string must have a length of exactly 7 characters.
    if len(x) != 7:
        return False

    # Condition 3: The string must be a palindrome (reads the same forwards and backwards).
    if x != x[::-1]:
        return False

    # Condition 4: All characters in the string must be lowercase English letters ('a' through 'z').
    if not all('a' <= c <= 'z' for c in x):
        return False

    # For a 7-character palindrome (c1 c2 c3 c4 c3 c2 c1), the truly unique characters are c1, c2, c3, and c4.
    # Let's extract these characters from the first half of the string.
    c1, c2, c3, c4 = x[0], x[1], x[2], x[3]

    # Condition 5: The four "unique" characters (c1, c2, c3, c4) must themselves be distinct from each other.
    if len(set([c1, c2, c3, c4])) != 4:
        return False

    # Condition 6: The sum of the ASCII (ordinal) values of ALL characters in the string must be 802.
    total_ascii_sum = sum(ord(c) for c in x)
    if total_ascii_sum != 802:
        return False

    # Condition 7: The sum of the ASCII (ordinal) values of the *truly unique* characters
    # (i.e., the set {c1, c2, c3, c4}) must be 453.
    unique_ascii_sum = sum(ord(c) for c in set(x))
    if unique_ascii_sum != 453:
        return False

    # Condition 8: The sum of the ASCII values of the first three characters (c1, c2, c3) must be a prime number.
    first_three_sum = ord(c1) + ord(c2) + ord(c3)
    if not _is_prime(first_three_sum):
        return False

    return True
"zyjhjyz"
"pythtyp"
Proposer: gemini-2.5-flash Solver: gpt-5-mini-2025-08-07
0 vs 0
#3 Solved
import hashlib

def _is_prime(n: int) -> bool:
    if n < 2:
        return False
    if n % 2 == 0:
        return n == 2
    i = 3
    while i * i <= n:
        if n % i == 0:
            return False
        i += 2
    return True

def mystery(x):
    # Must be a string
    if not isinstance(x, str):
        return False

    # Length constraint (filters many candidates)
    if len(x) != 5:
        return False

    # Second character constraint
    if len(x) > 1 and x[1] != 'e':
        return False

    # Sum of ASCII codes of all characters must match this specific total
    if sum(ord(c) for c in x) != 532:
        return False

    # Sum of ASCII values of the first three characters must be prime
    if not _is_prime(sum(ord(c) for c in x[:3])):
        return False

    # Final cryptographic check: SHA-256 digest must match this target
    target_digest = "2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824"
    if hashlib.sha256(x.encode("utf-8")).hexdigest() != target_digest:
        return False

    return True
"hello"
"hello"
Proposer: gpt-5-mini-2025-08-07 Solver: gemini-2.5-flash
0 vs 0
#4 Sample Solution Wrong
import math
import hashlib

def _is_prime(n: int) -> bool:
    if n < 2:
        return False
    if n % 2 == 0:
        return n == 2
    i = 3
    while i * i <= n:
        if n % i == 0:
            return False
        i += 2
    return True

def _is_perfect_square(n: int) -> bool:
    if n < 0:
        return False
    sqrt_n = int(math.isqrt(n))
    return sqrt_n * sqrt_n == n

def mystery(x):
    # Condition 1: Input must be a string.
    if not isinstance(x, str):
        return False

    # Condition 2: Length must be exactly 8 characters.
    if len(x) != 8:
        return False

    # Condition 3: All characters must be either a digit ('0'-'9') or a lowercase English vowel ('a','e','i','o','u').
    allowed_chars = "0123456789aeiou"
    if not all(c in allowed_chars for c in x):
        return False

    # Condition 4: The first character must be a vowel.
    vowels = "aeiou"
    if x[0] not in vowels:
        return False

    # Condition 5: The last character must be a digit.
    digits = "0123456789"
    if x[7] not in digits:
        return False

    # Condition 6: The sum of the ordinal (ASCII) values of the first four characters must be a prime number.
    sum_first_four_ords = sum(ord(c) for c in x[:4])
    if not _is_prime(sum_first_four_ords):
        return False

    # Condition 7: The sum of the ordinal (ASCII) values of the last four characters must be a perfect square.
    sum_last_four_ords = sum(ord(c) for c in x[4:])
    if not _is_perfect_square(sum_last_four_ords):
        return False

    # Condition 8: The sum of ALL ordinal (ASCII) values of the characters must be exactly 507.
    total_sum_ords = sum_first_four_ords + sum_last_four_ords
    if total_sum_ords != 507:
        return False

    # Condition 9: The SHA-256 hash of the string must match a specific target digest.
    target_digest = "d866a7b7501a357f8841a1362092323e2a05e4664fb971350a221f576e3e5793"
    if hashlib.sha256(x.encode("utf-8")).hexdigest() != target_digest:
        return False

    return True
"a9i40004"
Proposer: gemini-2.5-flash Solver: gpt-5-mini-2025-08-07
0 vs -1
#5 Solved
import hashlib

def mystery(x) -> bool:
    # Accept only strings
    if not isinstance(x, str):
        return False

    # Length constraint (filters many candidates)
    if len(x) != 4:
        return False

    # Second character must be 'e'
    if x[1] != 'e':
        return False

    # Sum of ASCII codes of all characters must equal 448
    if sum(ord(c) for c in x) != 448:
        return False

    # Additional check: MD5 digest must match the chosen target
    target_digest = "098f6bcd4621d373cade4e832627b4f6"
    if hashlib.md5(x.encode("utf-8")).hexdigest() != target_digest:
        return False

    return True
"test"
"test"
Proposer: gpt-5-mini-2025-08-07 Solver: gemini-2.5-flash
0 vs -1
#6 Sample Solution Wrong
import hashlib

def mystery(x) -> bool:
    # Condition 1: Input must be a string.
    if not isinstance(x, str):
        return False

    # Condition 2: The string must have a length of exactly 6 characters.
    if len(x) != 6:
        return False

    # Condition 3: All characters in the string must be digits ('0' through '9').
    if not all(c.isdigit() for c in x):
        return False

    # Attempt to convert the string to an integer for further numerical checks.
    # This try-except block is largely for robustness; Condition 3 should prevent ValueError.
    try:
        num_x = int(x)
    except ValueError:
        return False

    # Condition 4: The first character, when interpreted as a digit, must be an even number.
    # (Note: '0' is considered an even digit).
    if int(x[0]) % 2 != 0:
        return False

    # Condition 5: The last character, when interpreted as a digit, must be an odd number.
    if int(x[5]) % 2 != 1:
        return False

    # Condition 6: The integer value of the entire 6-digit string must be perfectly divisible by 11.
    if num_x % 11 != 0:
        return False

    # Condition 7: The sum of the ordinal (ASCII) values of all six characters must be exactly 292.
    total_ord_sum = sum(ord(c) for c in x)
    if total_ord_sum != 292:
        return False

    # Condition 8: The SHA-256 hash of the string must match a specific target digest.
    target_digest = "841315b7fb562624d55b08053643734a652a92610b6537a89e0237d6e87f893e"
    if hashlib.sha256(x.encode("utf-8")).hexdigest() != target_digest:
        return False

    return True
"210001"
Proposer: gemini-2.5-flash Solver: gpt-5-mini-2025-08-07
0 vs -2
#7 Solver Failed
def _is_prime(n: int) -> bool:
    if n < 2:
        return False
    if n % 2 == 0:
        return n == 2
    i = 3
    while i * i <= n:
        if n % i == 0:
            return False
        i += 2
    return True

def mystery(x):
    # Must be a string of exactly 7 characters
    if not isinstance(x, str):
        return False
    if len(x) != 7:
        return False

    # All characters must be distinct
    if len(set(x)) != 7:
        return False

    # Must include at least one uppercase, one lowercase, and one digit
    if not any(c.isupper() for c in x):
        return False
    if not any(c.islower() for c in x):
        return False
    if not any(c.isdigit() for c in x):
        return False

    # Sum of ASCII codes must equal the chosen target (and be prime)
    total = sum(ord(c) for c in x)
    if total != 599:
        return False
    if not _is_prime(total):
        return False

    # XOR of all character codes must equal the code of the final character
    xor_all = 0
    for c in x:
        xor_all ^= ord(c)
    if xor_all != ord(x[-1]):
        return False

    # Product of character codes modulo a prime must match the chosen residue
    MOD = 1013
    prod_mod = 1
    for c in x:
        prod_mod = (prod_mod * ord(c)) % MOD
    if prod_mod != 718:
        return False

    # Sum of squares of ASCII codes must match the chosen total
    sum_squares = sum(ord(c) * ord(c) for c in x)
    if sum_squares != 55339:
        return False

    return True
x`, and my inability to find one within reasonable computational limits and standard interpretations, I must state this outcome.
"Xy2Z9pQ"
Proposer: gpt-5-mini-2025-08-07 Solver: gemini-2.5-flash
1 vs -2
#8 Sample Solution Wrong
import hashlib

def _is_prime(n: int) -> bool:
    """Helper function to check if a number is prime."""
    if n < 2:
        return False
    if n % 2 == 0:
        return n == 2
    i = 3
    while i * i <= n:
        if n % i == 0:
            return False
        i += 2
    return True

def mystery(x) -> bool:
    """
    This function takes a value x and returns True if x satisfies a very specific
    set of conditions, otherwise False. The goal is to find such an x.
    """

    # Condition 1: The input must be a string.
    if not isinstance(x, str):
        return False

    # Condition 2: The string must have a length of exactly 5 characters.
    if len(x) != 5:
        return False

    # Condition 3: All characters must be lowercase English letters ('a' through 'z').
    # Additionally, all characters in the string must be distinct from each other.
    if not all('a' <= c <= 'z' for c in x) or len(set(x)) != 5:
        return False

    # Define vowels and consonants for convenience
    vowels = "aeiou"
    consonants = "bcdfghjklmnpqrstvwxyz"

    # Condition 4: The first character (index 0) must be a vowel.
    if x[0] not in vowels:
        return False

    # Condition 5: The last character (index 4) must be a consonant.
    if x[4] not in consonants:
        return False

    # Condition 6: The ordinal (ASCII) value of the middle character (x[2]) must be a prime number.
    if not _is_prime(ord(x[2])):
        return False

    # Condition 7: The sum of the ordinal (ASCII) values of all five characters must satisfy a specific property.
    total_ord_sum = sum(ord(c) for c in x)
    
    # The sum of the digits of this total ordinal sum must be exactly 14.
    sum_digits_of_total_sum = sum(int(d) for d in str(total_ord_sum))
    if sum_digits_of_total_sum != 14:
        return False

    # Condition 8: The SHA-256 hash of the string must match a specific target digest.
    target_digest = "56c54714659b83e49861619623e1e2474966601b31a89c3683f124c619e917d5"
    if hashlib.sha256(x.encode("utf-8")).hexdigest() != target_digest:
        return False

    return True
"ajkxs"
Proposer: gemini-2.5-flash Solver: gpt-5-mini-2025-08-07
1 vs -3
#9 Solver Failed
import math
from typing import Dict

def _is_probable_prime(n: int) -> bool:
    """Deterministic Miller-Rabin for 32/64-bit integers (sufficient for our range)."""
    if n < 2:
        return False
    small_primes = (2, 3, 5, 7, 11, 13, 17, 19, 23)
    for p in small_primes:
        if n % p == 0:
            return n == p

    # write n-1 as d * 2^s
    d = n - 1
    s = 0
    while d % 2 == 0:
        d //= 2
        s += 1

    # witnesses sufficient for 64-bit determinism in practice for our input sizes
    witnesses = (2, 3, 5, 7, 11)
    def check(a, s, d, n):
        x = pow(a, d, n)
        if x == 1 or x == n - 1:
            return True
        for _ in range(s - 1):
            x = (x * x) % n
            if x == n - 1:
                return True
        return False

    for a in witnesses:
        if not check(a, s, d, n):
            return False
    return True

def mystery(x):
    # Must be an integer
    if not isinstance(x, int):
        return False

    # Range constraint (filters many trivial small solutions)
    if x < 10**9 or x >= 10**10:
        return False

    # Must be prime
    if not _is_probable_prime(x):
        return False

    # Sum of decimal digits must be exactly 8
    if sum(int(d) for d in str(x)) != 8:
        return False

    # A set of modular constraints (many coprime moduli -> narrow solution space via CRT)
    residues: Dict[int, int] = {
        3: 2,
        5: 2,
        7: 6,
        11: 6,
        13: 6,
        17: 14,
        19: 6,
        23: 4,
        29: 25,
        31: 23,
    }
    for m, r in residues.items():
        if x % m != r:
            return False

    # Last-three-digits constraint
    if x % 1000 != 7:
        return False

    return True
None
1000000007
Proposer: gpt-5-mini-2025-08-07 Solver: gemini-2.5-flash
2 vs -3
#10 Sample Solution Wrong
import math

def _is_prime(n: int) -> bool:
    """Helper function to check if a number is prime."""
    if n < 2:
        return False
    if n % 2 == 0:
        return n == 2
    i = 3
    while i * i <= n:
        if n % i == 0:
            return False
        i += 2
    return True

def mystery(x) -> bool:
    """
    This function takes an integer x and returns True if x satisfies a very specific
    set of numerical and digit-based conditions, otherwise False. The goal is to find such an x.
    """

    # Condition 1: The input must be an integer.
    if not isinstance(x, int):
        return False

    # Condition 2: The integer must be an 8-digit number.
    # This means x must be between 10,000,000 (10^7) and 99,999,999 (10^8 - 1).
    if not (10**7 <= x < 10**8):
        return False

    # Condition 3: The integer x must be a perfect cube.
    # Calculate the cube root and check if it's an integer.
    # Using round() helps with potential floating point inaccuracies for perfect cubes.
    cbrt_x_float = round(x**(1/3))
    if not (cbrt_x_float * cbrt_x_float * cbrt_x_float == x):
        return False

    # Convert the integer to a string to easily access its digits.
    str_x = str(x)
    
    # Condition 4: The string representation of x must contain the digit '3'.
    if '3' not in str_x:
        return False

    # Condition 5: The sum of the digits of x must be a prime number.
    sum_digits = sum(int(d) for d in str_x)
    if not _is_prime(sum_digits):
        return False

    # Condition 6: The number of even digits in x must be exactly 5.
    # (Even digits are 0, 2, 4, 6, 8. Odd digits are 1, 3, 5, 7, 9.)
    even_digit_count = sum(1 for d in str_x if int(d) % 2 == 0)
    if even_digit_count != 5:
        return False

    return True
89938880
Proposer: gemini-2.5-flash Solver: gpt-5-mini-2025-08-07
2 vs -4