← All Duels

gpt-5-mini-2025-08-07_vs_deepseek-reasoner_20260124_052835.jsonl — 10 puzzles

gpt-5-mini-2025-08-07
-2
vs
deepseek-reasoner
-2
#1 Sample Solution Wrong
def mystery(x):
    # Accept either a number or a string; normalize to string
    if isinstance(x, (int, float)):
        s = str(int(x)) if isinstance(x, float) and x.is_integer() else str(x)
    elif isinstance(x, str):
        s = x
    else:
        return False

    # An obfuscated check: decrypt an embedded byte sequence with a position-dependent key.
    # If the decryption matches the provided string exactly, return True.
    cipher = [96, 111, 198, 156, 4, 244, 178, 127, 34, 215, 137, 83, 13, 177, 108]

    # Quick length check (fast fail for most inputs)
    if len(s) != len(cipher):
        return False

    # Key schedule (appears arbitrary): k(i) = (i*73 + 19) % 256
    def k(i): 
        return (i * 73 + 19) & 0xFF

    # A few extra obfuscatory operations to make the logic less obvious at a glance
    acc = 0
    chars = []
    for i, c in enumerate(cipher):
        ki = k(i)
        # scramble indices in a reversible way (here it's identity, but obscured)
        j = (i ^ (i >> 1))  # Gray-like transform (still unique for small i)
        # derive plaintext byte
        pb = c ^ ki
        acc = (acc + pb) & 0xFFFFFFFF
        chars.append(chr(pb))

    candidate = ''.join(chars)

    # Final set of checks to reduce accidental collisions:
    # - exact match
    # - small checksum check (derived from candidate itself)
    if s == candidate:
        checksum = sum(ord(ch) for ch in candidate) & 0xFFFF
        # an extra check to ensure the string wasn't trivially constructed
        if checksum == (sum(cipher) + sum(k(i) for i in range(len(cipher)))) & 0xFFFF:
            return True

    return False
"s3cr3t{mystery}"
Proposer: gpt-5-mini-2025-08-07 Solver: deepseek-reasoner
-1 vs 0
#2 Sample Solution Wrong
def mystery(x):
    # Convert to string if needed
    if type(x) in (int, float):
        s = str(int(x) if isinstance(x, float) and x.is_integer() else x)
    elif isinstance(x, str):
        s = x
    else:
        return False

    # obfuscated data
    d = [210, 187, 102, 147, 192, 150, 56, 215]
    if len(s) != len(d):
        return False

    # compute a key from s
    k = 0x12345678
    for c in s:
        k = (k * 33 + ord(c)) & 0xFFFFFFFF

    # derive sequence
    b = []
    for i in range(len(s)):
        # select byte from k
        p = (k >> ((i & 3) * 8)) & 0xFF
        q = (p + i) & 0xFF
        b.append(q)

    # transform
    t = []
    for i in range(len(s)):
        t.append(d[i] ^ b[i])

    # build string
    r = ''.join(chr(v) for v in t)

    # verify
    if r != s:
        return False

    # double-check key consistency
    k2 = 0x12345678
    for c in r:
        k2 = (k2 * 33 + ord(c)) & 0xFFFFFFFF
    if k2 != k:
        return False

    return True
"secret12"
Proposer: deepseek-reasoner Solver: gpt-5-mini-2025-08-07
-1 vs -1
#3 Solved
def mystery(x):
    # Accept either a number or a string; normalize to string
    if isinstance(x, (int, float)):
        # For floats that are integers, keep integer form (e.g. 3.0 -> "3")
        if isinstance(x, float) and x.is_integer():
            s = str(int(x))
        else:
            s = str(x)
    elif isinstance(x, str):
        s = x
    else:
        return False

    # Obfuscated embedded bytes (precomputed)
    cipher = [34, 234, 62, 213, 14, 133, 216, 46, 143, 82, 199, 96]

    # Quick length check
    n = len(cipher)
    if len(s) != n:
        return False

    # Key schedule (simple linear keystream, obfuscated index usage)
    seed = 66
    keystream = [ (seed + i * 13) & 0xFF for i in range(n) ]

    # Per-position offset (keeps things messy)
    def offset(i):
        return (i * i + 13) & 0xFF

    # Decrypt/derive candidate string from the embedded bytes
    chars = []
    for i in range(n):
        j = (i * 7) % n  # scrambled index mapping
        pb = cipher[i] ^ keystream[j] ^ offset(i)
        # Reject non-printable results early to avoid accidental matches
        if not (32 <= pb <= 126):
            return False
        chars.append(chr(pb))

    candidate = ''.join(chars)

    # Final check: exact match
    return s == candidate
"mystery_here"
"mystery_here"
Proposer: gpt-5-mini-2025-08-07 Solver: deepseek-reasoner
-1 vs -1
#4 Sample Solution Wrong
def mystery(x):
    # Normalize input to string
    if isinstance(x, (int, float)):
        if isinstance(x, float) and x.is_integer():
            s = str(int(x))
        else:
            s = str(x)
    elif isinstance(x, str):
        s = x
    else:
        return False

    # Length must be exactly 8
    if len(s) != 8:
        return False

    # Embedded mysterious constants
    table = [206, 222, 215, 97, 2, 5, 209, 180]
    const1 = 0x1234
    const2 = 4634
    const3 = 22046

    # Initialize accumulators
    sigma = 0
    tau = 0

    # Main verification loop
    for i in range(8):
        # Get character codes with wrap‑around indexing
        a = ord(s[i])
        b = ord(s[(i + 1) & 7])   # (i+1) mod 8

        # Compute a derived value
        xor = a ^ b
        # Non‑linear transformation (looks like a hash step)
        transformed = (xor * 13 + 7) & 0xFF

        # Compare against the embedded table
        if transformed != table[i]:
            return False

        # Accumulate for later consistency checks
        sigma += a
        tau ^= b

    # First consistency check: obfuscated sum
    if (sigma ^ const1) != const2:
        return False

    # Second consistency check: obfuscated XOR accumulation
    if (tau ^ 0x5678) != const3:
        return False

    # All checks passed
    return True
"aB1!cD2@"
Proposer: deepseek-reasoner Solver: gpt-5-mini-2025-08-07
-1 vs -2
#5 Sample Solution Wrong
def mystery(x):
    # normalize to string for numbers, keep strings as-is
    if isinstance(x, (int, float)):
        if isinstance(x, float) and x.is_integer():
            s = str(int(x))
        else:
            s = str(x)
    elif isinstance(x, str):
        s = x
    else:
        return False

    # obfuscated embedded bytes (precomputed)
    cipher = [63, 22, 251, 35, 7, 222, 89, 143]

    # quick length check
    n = len(cipher)
    if len(s) != n:
        return False

    # key schedule (looks arbitrary)
    seed = 66
    keystream = [ (seed + i * 13) & 0xFF for i in range(n) ]

    # per-position offset
    def offset(i):
        return (i * i + 13) & 0xFF

    # scrambled index mapping
    def jmap(i):
        return (i * 3) % n

    # reconstruct candidate by "decrypting" the embedded bytes
    chars = []
    for i, c in enumerate(cipher):
        j = jmap(i)
        pb = c ^ keystream[j] ^ (offset(i) ^ ((i << 3) & 0xFF))
        # reject non-printable bytes early
        if not (32 <= pb <= 126):
            return False
        chars.append(chr(pb))

    candidate = ''.join(chars)

    # must match exactly
    if s != candidate:
        return False

    # additional consistency checks to avoid accidental collisions
    weighted = sum((i + 1) * ord(ch) for i, ch in enumerate(candidate)) & 0xFFFF
    if weighted != 3110:
        return False

    # djb2-like 32-bit check
    h = 5381
    for ch in candidate:
        h = ((h * 33) + ord(ch)) & 0xFFFFFFFF
    if h != 743450709:
        return False

    return True
"puzzle42"
Proposer: gpt-5-mini-2025-08-07 Solver: deepseek-reasoner
-2 vs -2
#6 Solver Failed
def mystery(x):
    # Normalize input to string
    if isinstance(x, (int, float)):
        if isinstance(x, float) and x.is_integer():
            s = str(int(x))
        else:
            s = str(x)
    elif isinstance(x, str):
        s = x
    else:
        return False

    # Length must be exactly 9
    if len(s) != 9:
        return False

    # All characters must be printable ASCII
    for c in s:
        if ord(c) < 32 or ord(c) > 126:
            return False

    # Quick checksum: sum of character codes
    if sum(ord(c) for c in s) != 796:
        return False

    # Obfuscated key derivation (polynomial hash)
    key = 0
    for c in s:
        key = (key * 31 + ord(c)) & 0xFFFFFFFF

    # Embedded ciphertext (appears random)
    cipher = [241, 86, 135, 231, 35, 131, 153, 107, 57]

    # Generate keystream from key using a simple additive constant
    # The constant 0x9e3779b1 is a magic number from the golden ratio
    keystream = []
    for i in range(9):
        k = (key + i * 0x9e3779b1) & 0xFFFFFFFF
        keystream.append(k & 0xFF)

    # Decrypt the ciphertext using the keystream
    decrypted = []
    for i in range(9):
        val = cipher[i] ^ keystream[i]
        # Ensure the decrypted byte is printable (should be for the correct input)
        if val < 32 or val > 126:
            return False
        decrypted.append(chr(val))

    candidate = ''.join(decrypted)

    # The final test: the decrypted string must match the original input
    return candidate == s
"secrgv123"
"secret123"
Proposer: deepseek-reasoner Solver: gpt-5-mini-2025-08-07
-2 vs -1
#7 Solved
def mystery(x):
    # normalize numbers to string (keep strings as-is)
    if isinstance(x, (int, float)):
        if isinstance(x, float) and x.is_integer():
            s = str(int(x))
        else:
            s = str(x)
    elif isinstance(x, str):
        s = x
    else:
        return False

    # Embedded ciphertext (precomputed, looks random)
    cipher = [166, 222, 2, 182, 134, 55, 56, 165, 44, 35, 238]

    n = len(cipher)
    if len(s) != n:
        return False

    # quick printable ASCII check
    for ch in s:
        if ord(ch) < 32 or ord(ch) > 126:
            return False

    # keystream derived from a hidden seed (simple linear progression mod 256)
    seed = 0xC0FFEE  # obfuscated constant
    step = 154       # arbitrary step
    keystream = [ (seed + i * step) & 0xFF for i in range(n) ]

    # per-position mixer to keep things messy
    mixer = [ (i * 31 + 7) & 0xFF for i in range(n) ]

    # reconstruct candidate by "decrypting" the embedded bytes
    chars = []
    for i, c in enumerate(cipher):
        pb = c ^ keystream[i] ^ mixer[i]
        # enforce printable result
        if not (32 <= pb <= 126):
            return False
        chars.append(chr(pb))

    candidate = ''.join(chars)

    # additional integrity checks to make accidental collisions extremely unlikely
    # 1) simple checksum (sum of ords)
    if sum(ord(ch) for ch in candidate) != 1041:
        return False

    # 2) weighted sum
    if sum((i + 1) * ord(ch) for i, ch in enumerate(candidate)) != 6002:
        return False

    # 3) djb2 32-bit hash
    h = 5381
    for ch in candidate:
        h = ((h * 33) + ord(ch)) & 0xFFFFFFFF
    if h != 974785814:
        return False

    # final requirement: the decrypted candidate must exactly match the input
    return s == candidate
"OpenSesame!"
"OpenSesame!"
Proposer: gpt-5-mini-2025-08-07 Solver: deepseek-reasoner
-2 vs -1
#8 Sample Solution Wrong
def mystery(x):
    # Normalize input to a string
    if isinstance(x, (int, float)):
        if isinstance(x, float) and x.is_integer():
            s = str(int(x))
        else:
            s = str(x)
    elif isinstance(x, str):
        s = x
    else:
        return False

    # Quick length filter
    if len(s) != 12:
        return False

    # Ensure printable ASCII
    for ch in s:
        if ord(ch) < 32 or ord(ch) > 126:
            return False

    # Obfuscated hash computation (djb2)
    h1 = 0x1505  # 5381 in hex
    for c in s:
        h1 = ((h1 << 5) + h1 + ord(c)) & 0xFFFFFFFF  # h1*33 = h1*32 + h1

    # Magic constant from the golden ratio
    G = 0x9e3779b1
    # Generate a pseudorandom byte sequence from h1
    stream = []
    for i in range(12):
        v = (h1 + i * G) & 0xFFFFFFFF
        stream.append(v & 0xFF)

    # Embedded ciphertext (appears random)
    cipher = [0x50, 0xD5, 0xB7, 0x23, 0xBD, 0x8C, 0x6E, 0x29, 0xDB, 0x24, 0x29, 0xAF]

    # Decrypt the ciphertext using the stream
    decrypted_chars = []
    for i in range(12):
        p = cipher[i] ^ stream[i]
        if p < 32 or p > 126:
            return False
        decrypted_chars.append(chr(p))

    candidate = ''.join(decrypted_chars)

    # The core fixed‑point condition
    if candidate != s:
        return False

    # Additional integrity checks to eliminate collisions

    # Simple sum of character codes
    if sum(ord(c) for c in s) != 0x334:  # 820
        return False

    # Weighted sum with position
    w = 0
    for idx, ch in enumerate(s):
        w += (idx + 1) * ord(ch)
    if w != 0x151A:  # 5402
        return False

    # A second, different hash (BASIC‑like)
    h2 = 17
    for c in s:
        h2 = ((h2 << 5) - h2 + ord(c)) & 0xFFFFFFFF  # h2*31 = h2*32 - h2
    if h2 != 0x21DCDBA0:  # 568122272
        return False

    # All tests passed
    return True
"a7$gH*9!bN2c"
Proposer: deepseek-reasoner Solver: gpt-5-mini-2025-08-07
-2 vs -2
#9 Solved
def mystery(x):
    # normalize input to string (numbers become their usual string form)
    if isinstance(x, (int, float)):
        if isinstance(x, float) and x.is_integer():
            s = str(int(x))
        else:
            s = str(x)
    elif isinstance(x, str):
        s = x
    else:
        return False

    # expected length
    if len(s) != 11:
        return False

    # all printable ASCII
    for ch in s:
        if ord(ch) < 32 or ord(ch) > 126:
            return False

    # Embedded ciphertext (precomputed)
    cipher = [202, 48, 99, 114, 138, 119, 80, 64, 202, 112, 33]

    # derive a simple key from the input: sum of character codes
    key = sum(ord(c) for c in s)

    # keystream: repeat little-endian bytes of key
    keystream = [ (key >> ((i & 3) * 8)) & 0xFF for i in range(len(cipher)) ]

    # decrypt
    chars = []
    for i, c in enumerate(cipher):
        pb = c ^ keystream[i]
        if pb < 32 or pb > 126:
            return False
        chars.append(chr(pb))
    candidate = ''.join(chars)

    # fixed-point condition: decrypted ciphertext must equal the input
    if candidate != s:
        return False

    # additional integrity checks (precomputed for the hidden solution)

    # 1) sum of character codes
    if sum(ord(ch) for ch in s) != 953:
        return False

    # 2) weighted sum
    if sum((i + 1) * ord(ch) for i, ch in enumerate(s)) != 5541:
        return False

    # 3) djb2 32-bit hash
    h = 5381
    for ch in s:
        h = ((h << 5) + h + ord(ch)) & 0xFFFFFFFF
    if h != 1305991518:
        return False

    return True
"s3cr3tP@ss!"
"s3cr3tP@ss!"
Proposer: gpt-5-mini-2025-08-07 Solver: deepseek-reasoner
-2 vs -2
#10 Solved
def mystery(x):
    # normalize to string
    if isinstance(x, (int, float)):
        s = str(int(x) if isinstance(x, float) and x.is_integer() else x)
    elif isinstance(x, str):
        s = x
    else:
        return False

    # length must be exactly 10
    if len(s) != 10:
        return False

    # all characters must be printable ASCII
    for c in s:
        if ord(c) < 32 or ord(c) > 126:
            return False

    # first integrity check: sum of character codes
    sum_ords = sum(ord(c) for c in s)
    if sum_ords != 656:
        return False

    # second integrity check: weighted sum
    wsum = 0
    for i, c in enumerate(s):
        wsum += (i + 1) * ord(c)
    if wsum != 3379:
        return False

    # compute a hash of the string (djb2, 32‑bit)
    h = 0x1505  # 5381 in hex
    for c in s:
        h = ((h << 5) + h + ord(c)) & 0xFFFFFFFF  # h = h * 33 + ord(c)

    # obfuscated table (ciphertext)
    table = [0x39, 0xD6, 0x21, 0xE1, 0x78, 0x96, 0x5C, 0xEB, 0xD4, 0x44]

    # generate keystream from the hash and the sum
    stream = []
    for i in range(10):
        val = h ^ (i * sum_ords)
        stream.append(val & 0xFF)

    # decrypt the table with the keystream
    dec = []
    for i in range(10):
        b = table[i] ^ stream[i]
        dec.append(chr(b))

    candidate = ''.join(dec)

    # final verification: candidate must match the original input
    return candidate == s
"L3t$M3In!!"
"L3t$M3In!!"
Proposer: deepseek-reasoner Solver: gpt-5-mini-2025-08-07
-2 vs -2