def mystery(x):
# Accept either a number or a string; normalize to string
if isinstance(x, (int, float)):
s = str(int(x)) if isinstance(x, float) and x.is_integer() else str(x)
elif isinstance(x, str):
s = x
else:
return False
# An obfuscated check: decrypt an embedded byte sequence with a position-dependent key.
# If the decryption matches the provided string exactly, return True.
cipher = [96, 111, 198, 156, 4, 244, 178, 127, 34, 215, 137, 83, 13, 177, 108]
# Quick length check (fast fail for most inputs)
if len(s) != len(cipher):
return False
# Key schedule (appears arbitrary): k(i) = (i*73 + 19) % 256
def k(i):
return (i * 73 + 19) & 0xFF
# A few extra obfuscatory operations to make the logic less obvious at a glance
acc = 0
chars = []
for i, c in enumerate(cipher):
ki = k(i)
# scramble indices in a reversible way (here it's identity, but obscured)
j = (i ^ (i >> 1)) # Gray-like transform (still unique for small i)
# derive plaintext byte
pb = c ^ ki
acc = (acc + pb) & 0xFFFFFFFF
chars.append(chr(pb))
candidate = ''.join(chars)
# Final set of checks to reduce accidental collisions:
# - exact match
# - small checksum check (derived from candidate itself)
if s == candidate:
checksum = sum(ord(ch) for ch in candidate) & 0xFFFF
# an extra check to ensure the string wasn't trivially constructed
if checksum == (sum(cipher) + sum(k(i) for i in range(len(cipher)))) & 0xFFFF:
return True
return False
def mystery(x):
# Convert to string if needed
if type(x) in (int, float):
s = str(int(x) if isinstance(x, float) and x.is_integer() else x)
elif isinstance(x, str):
s = x
else:
return False
# obfuscated data
d = [210, 187, 102, 147, 192, 150, 56, 215]
if len(s) != len(d):
return False
# compute a key from s
k = 0x12345678
for c in s:
k = (k * 33 + ord(c)) & 0xFFFFFFFF
# derive sequence
b = []
for i in range(len(s)):
# select byte from k
p = (k >> ((i & 3) * 8)) & 0xFF
q = (p + i) & 0xFF
b.append(q)
# transform
t = []
for i in range(len(s)):
t.append(d[i] ^ b[i])
# build string
r = ''.join(chr(v) for v in t)
# verify
if r != s:
return False
# double-check key consistency
k2 = 0x12345678
for c in r:
k2 = (k2 * 33 + ord(c)) & 0xFFFFFFFF
if k2 != k:
return False
return True
def mystery(x):
# Accept either a number or a string; normalize to string
if isinstance(x, (int, float)):
# For floats that are integers, keep integer form (e.g. 3.0 -> "3")
if isinstance(x, float) and x.is_integer():
s = str(int(x))
else:
s = str(x)
elif isinstance(x, str):
s = x
else:
return False
# Obfuscated embedded bytes (precomputed)
cipher = [34, 234, 62, 213, 14, 133, 216, 46, 143, 82, 199, 96]
# Quick length check
n = len(cipher)
if len(s) != n:
return False
# Key schedule (simple linear keystream, obfuscated index usage)
seed = 66
keystream = [ (seed + i * 13) & 0xFF for i in range(n) ]
# Per-position offset (keeps things messy)
def offset(i):
return (i * i + 13) & 0xFF
# Decrypt/derive candidate string from the embedded bytes
chars = []
for i in range(n):
j = (i * 7) % n # scrambled index mapping
pb = cipher[i] ^ keystream[j] ^ offset(i)
# Reject non-printable results early to avoid accidental matches
if not (32 <= pb <= 126):
return False
chars.append(chr(pb))
candidate = ''.join(chars)
# Final check: exact match
return s == candidate
def mystery(x):
# Normalize input to string
if isinstance(x, (int, float)):
if isinstance(x, float) and x.is_integer():
s = str(int(x))
else:
s = str(x)
elif isinstance(x, str):
s = x
else:
return False
# Length must be exactly 8
if len(s) != 8:
return False
# Embedded mysterious constants
table = [206, 222, 215, 97, 2, 5, 209, 180]
const1 = 0x1234
const2 = 4634
const3 = 22046
# Initialize accumulators
sigma = 0
tau = 0
# Main verification loop
for i in range(8):
# Get character codes with wrap‑around indexing
a = ord(s[i])
b = ord(s[(i + 1) & 7]) # (i+1) mod 8
# Compute a derived value
xor = a ^ b
# Non‑linear transformation (looks like a hash step)
transformed = (xor * 13 + 7) & 0xFF
# Compare against the embedded table
if transformed != table[i]:
return False
# Accumulate for later consistency checks
sigma += a
tau ^= b
# First consistency check: obfuscated sum
if (sigma ^ const1) != const2:
return False
# Second consistency check: obfuscated XOR accumulation
if (tau ^ 0x5678) != const3:
return False
# All checks passed
return True
def mystery(x):
# normalize to string for numbers, keep strings as-is
if isinstance(x, (int, float)):
if isinstance(x, float) and x.is_integer():
s = str(int(x))
else:
s = str(x)
elif isinstance(x, str):
s = x
else:
return False
# obfuscated embedded bytes (precomputed)
cipher = [63, 22, 251, 35, 7, 222, 89, 143]
# quick length check
n = len(cipher)
if len(s) != n:
return False
# key schedule (looks arbitrary)
seed = 66
keystream = [ (seed + i * 13) & 0xFF for i in range(n) ]
# per-position offset
def offset(i):
return (i * i + 13) & 0xFF
# scrambled index mapping
def jmap(i):
return (i * 3) % n
# reconstruct candidate by "decrypting" the embedded bytes
chars = []
for i, c in enumerate(cipher):
j = jmap(i)
pb = c ^ keystream[j] ^ (offset(i) ^ ((i << 3) & 0xFF))
# reject non-printable bytes early
if not (32 <= pb <= 126):
return False
chars.append(chr(pb))
candidate = ''.join(chars)
# must match exactly
if s != candidate:
return False
# additional consistency checks to avoid accidental collisions
weighted = sum((i + 1) * ord(ch) for i, ch in enumerate(candidate)) & 0xFFFF
if weighted != 3110:
return False
# djb2-like 32-bit check
h = 5381
for ch in candidate:
h = ((h * 33) + ord(ch)) & 0xFFFFFFFF
if h != 743450709:
return False
return True
def mystery(x):
# Normalize input to string
if isinstance(x, (int, float)):
if isinstance(x, float) and x.is_integer():
s = str(int(x))
else:
s = str(x)
elif isinstance(x, str):
s = x
else:
return False
# Length must be exactly 9
if len(s) != 9:
return False
# All characters must be printable ASCII
for c in s:
if ord(c) < 32 or ord(c) > 126:
return False
# Quick checksum: sum of character codes
if sum(ord(c) for c in s) != 796:
return False
# Obfuscated key derivation (polynomial hash)
key = 0
for c in s:
key = (key * 31 + ord(c)) & 0xFFFFFFFF
# Embedded ciphertext (appears random)
cipher = [241, 86, 135, 231, 35, 131, 153, 107, 57]
# Generate keystream from key using a simple additive constant
# The constant 0x9e3779b1 is a magic number from the golden ratio
keystream = []
for i in range(9):
k = (key + i * 0x9e3779b1) & 0xFFFFFFFF
keystream.append(k & 0xFF)
# Decrypt the ciphertext using the keystream
decrypted = []
for i in range(9):
val = cipher[i] ^ keystream[i]
# Ensure the decrypted byte is printable (should be for the correct input)
if val < 32 or val > 126:
return False
decrypted.append(chr(val))
candidate = ''.join(decrypted)
# The final test: the decrypted string must match the original input
return candidate == s
def mystery(x):
# normalize numbers to string (keep strings as-is)
if isinstance(x, (int, float)):
if isinstance(x, float) and x.is_integer():
s = str(int(x))
else:
s = str(x)
elif isinstance(x, str):
s = x
else:
return False
# Embedded ciphertext (precomputed, looks random)
cipher = [166, 222, 2, 182, 134, 55, 56, 165, 44, 35, 238]
n = len(cipher)
if len(s) != n:
return False
# quick printable ASCII check
for ch in s:
if ord(ch) < 32 or ord(ch) > 126:
return False
# keystream derived from a hidden seed (simple linear progression mod 256)
seed = 0xC0FFEE # obfuscated constant
step = 154 # arbitrary step
keystream = [ (seed + i * step) & 0xFF for i in range(n) ]
# per-position mixer to keep things messy
mixer = [ (i * 31 + 7) & 0xFF for i in range(n) ]
# reconstruct candidate by "decrypting" the embedded bytes
chars = []
for i, c in enumerate(cipher):
pb = c ^ keystream[i] ^ mixer[i]
# enforce printable result
if not (32 <= pb <= 126):
return False
chars.append(chr(pb))
candidate = ''.join(chars)
# additional integrity checks to make accidental collisions extremely unlikely
# 1) simple checksum (sum of ords)
if sum(ord(ch) for ch in candidate) != 1041:
return False
# 2) weighted sum
if sum((i + 1) * ord(ch) for i, ch in enumerate(candidate)) != 6002:
return False
# 3) djb2 32-bit hash
h = 5381
for ch in candidate:
h = ((h * 33) + ord(ch)) & 0xFFFFFFFF
if h != 974785814:
return False
# final requirement: the decrypted candidate must exactly match the input
return s == candidate
def mystery(x):
# Normalize input to a string
if isinstance(x, (int, float)):
if isinstance(x, float) and x.is_integer():
s = str(int(x))
else:
s = str(x)
elif isinstance(x, str):
s = x
else:
return False
# Quick length filter
if len(s) != 12:
return False
# Ensure printable ASCII
for ch in s:
if ord(ch) < 32 or ord(ch) > 126:
return False
# Obfuscated hash computation (djb2)
h1 = 0x1505 # 5381 in hex
for c in s:
h1 = ((h1 << 5) + h1 + ord(c)) & 0xFFFFFFFF # h1*33 = h1*32 + h1
# Magic constant from the golden ratio
G = 0x9e3779b1
# Generate a pseudorandom byte sequence from h1
stream = []
for i in range(12):
v = (h1 + i * G) & 0xFFFFFFFF
stream.append(v & 0xFF)
# Embedded ciphertext (appears random)
cipher = [0x50, 0xD5, 0xB7, 0x23, 0xBD, 0x8C, 0x6E, 0x29, 0xDB, 0x24, 0x29, 0xAF]
# Decrypt the ciphertext using the stream
decrypted_chars = []
for i in range(12):
p = cipher[i] ^ stream[i]
if p < 32 or p > 126:
return False
decrypted_chars.append(chr(p))
candidate = ''.join(decrypted_chars)
# The core fixed‑point condition
if candidate != s:
return False
# Additional integrity checks to eliminate collisions
# Simple sum of character codes
if sum(ord(c) for c in s) != 0x334: # 820
return False
# Weighted sum with position
w = 0
for idx, ch in enumerate(s):
w += (idx + 1) * ord(ch)
if w != 0x151A: # 5402
return False
# A second, different hash (BASIC‑like)
h2 = 17
for c in s:
h2 = ((h2 << 5) - h2 + ord(c)) & 0xFFFFFFFF # h2*31 = h2*32 - h2
if h2 != 0x21DCDBA0: # 568122272
return False
# All tests passed
return True
def mystery(x):
# normalize input to string (numbers become their usual string form)
if isinstance(x, (int, float)):
if isinstance(x, float) and x.is_integer():
s = str(int(x))
else:
s = str(x)
elif isinstance(x, str):
s = x
else:
return False
# expected length
if len(s) != 11:
return False
# all printable ASCII
for ch in s:
if ord(ch) < 32 or ord(ch) > 126:
return False
# Embedded ciphertext (precomputed)
cipher = [202, 48, 99, 114, 138, 119, 80, 64, 202, 112, 33]
# derive a simple key from the input: sum of character codes
key = sum(ord(c) for c in s)
# keystream: repeat little-endian bytes of key
keystream = [ (key >> ((i & 3) * 8)) & 0xFF for i in range(len(cipher)) ]
# decrypt
chars = []
for i, c in enumerate(cipher):
pb = c ^ keystream[i]
if pb < 32 or pb > 126:
return False
chars.append(chr(pb))
candidate = ''.join(chars)
# fixed-point condition: decrypted ciphertext must equal the input
if candidate != s:
return False
# additional integrity checks (precomputed for the hidden solution)
# 1) sum of character codes
if sum(ord(ch) for ch in s) != 953:
return False
# 2) weighted sum
if sum((i + 1) * ord(ch) for i, ch in enumerate(s)) != 5541:
return False
# 3) djb2 32-bit hash
h = 5381
for ch in s:
h = ((h << 5) + h + ord(ch)) & 0xFFFFFFFF
if h != 1305991518:
return False
return True
def mystery(x):
# normalize to string
if isinstance(x, (int, float)):
s = str(int(x) if isinstance(x, float) and x.is_integer() else x)
elif isinstance(x, str):
s = x
else:
return False
# length must be exactly 10
if len(s) != 10:
return False
# all characters must be printable ASCII
for c in s:
if ord(c) < 32 or ord(c) > 126:
return False
# first integrity check: sum of character codes
sum_ords = sum(ord(c) for c in s)
if sum_ords != 656:
return False
# second integrity check: weighted sum
wsum = 0
for i, c in enumerate(s):
wsum += (i + 1) * ord(c)
if wsum != 3379:
return False
# compute a hash of the string (djb2, 32‑bit)
h = 0x1505 # 5381 in hex
for c in s:
h = ((h << 5) + h + ord(c)) & 0xFFFFFFFF # h = h * 33 + ord(c)
# obfuscated table (ciphertext)
table = [0x39, 0xD6, 0x21, 0xE1, 0x78, 0x96, 0x5C, 0xEB, 0xD4, 0x44]
# generate keystream from the hash and the sum
stream = []
for i in range(10):
val = h ^ (i * sum_ords)
stream.append(val & 0xFF)
# decrypt the table with the keystream
dec = []
for i in range(10):
b = table[i] ^ stream[i]
dec.append(chr(b))
candidate = ''.join(dec)
# final verification: candidate must match the original input
return candidate == s