def mystery(x):
# Input must be a string of length 8
if not isinstance(x, str) or len(x) != 8:
return False
# Must contain exactly the characters 'a' through 'h'
# (i.e. a permutation of "abcdefgh")
if set(x) != set("abcdefgh"):
return False
# Bitwise constraint check
m1 = m2 = 0
for i, c in enumerate(x):
k = ord(c)
# Check diagonal constraints implicitly using bitmasks
# The shift amounts are derived from the character value and position
b1 = 1 << (k - i)
b2 = 1 << (k + i)
# If the bit is already set, we have a collision
if (m1 & b1) or (m2 & b2):
return False
m1 |= b1
m2 |= b2
# Final specific check to narrow down the solution space
# (Calculated checksum of the solution)
return sum(ord(c) * i for i, c in enumerate(x)) == 2814
def mystery(x):
# x must be an integer
if not isinstance(x, int):
return False
# x must be in a reasonable range
if x <= 0 or x > 200000:
return False
s = str(x)
# Length must be exactly 6
if len(s) != 6:
return False
# First digit is 1
if s[0] != '1':
return False
# Digit sum constraint
if sum(int(d) for d in s) != 28:
return False
# Digit product constraint
prod = 1
for d in s:
prod *= int(d)
if prod != 1512:
return False
# Check perfect square
r = int(x ** 0.5)
if r * r != x:
return False
# Check perfect cube
# Use integer cube root via rounding
c = int(round(x ** (1/3)))
if c ** 3 != x:
return False
# Divisibility by 7
if x % 7 != 0:
return False
# All checks passed
return True
import struct
def mystery(x):
# Constraint 1: Input must be a 12-character alphanumeric string
if not isinstance(x, str) or len(x) != 12:
return False
if not x.isalnum():
return False
try:
# Treat input as three 32-bit big-endian integers
# 'latin-1' is used to map characters directly to bytes
a, b, c = struct.unpack('>III', x.encode('latin-1'))
except:
return False
mask = 0xFFFFFFFF
# Forward mixing function (3 rounds of reversible operations)
# Round 1: Mixing a, b, c with additions and XORs
a = (a + b) & mask
b = (b ^ c) ^ 0xDEADBEEF
c = (c - a) & mask
# Round 2: Introducing shifts and constants
a = (a ^ (c >> 5))
b = (b - c) & mask
c = (c + 0x12345678) & mask
# Round 3: Final mixing
a = (a + 0x87654321) & mask
b = (b ^ a) ^ 0x10101010
c = (c - b) & mask
# The resulting state must match this specific target
return [a, b, c] == [0x40D34E58, 0x5BE1A72D, 0x6CEC4CE2]
def mystery(x):
# x must be a string of length 8
if not isinstance(x, str) or len(x) != 8:
return False
# Must contain exactly the characters 'a' through 'h' each exactly once
if set(x) != set("abcdefgh"):
return False
cols = 0 # bitmask for columns (0..7)
diag1 = 0 # bitmask for diagonals i - v (shifted by +7)
diag2 = 0 # bitmask for diagonals i + v
for i, c in enumerate(x):
v = ord(c) - ord('a') # 0 for 'a', ..., 7 for 'h'
# Check column conflict
if cols & (1 << v):
return False
cols |= (1 << v)
# Check diagonal conflicts
d1 = i - v + 7
if diag1 & (1 << d1):
return False
diag1 |= (1 << d1)
d2 = i + v
if diag2 & (1 << d2):
return False
diag2 |= (1 << d2)
# Additional weighted sum constraint
weighted_sum = sum((i + 1) * (ord(c) - ord('a')) for i, c in enumerate(x))
return weighted_sum == 122
def mystery(x):
# Input must be a binary string of length 25
if not isinstance(x, str) or len(x) != 25:
return False
if any(c not in '01' for c in x):
return False
# Treat input as a 5x5 grid of button presses
# x[0]..x[4] is row 0, etc.
grid = [int(c) for c in x]
# Calculate the resulting light state
# A light at (r, c) is toggled if the button at (r, c) is pressed,
# OR if any adjacent button (up, down, left, right) is pressed.
# Initial state is all lights OFF (0).
result_bits = []
for r in range(5):
for c in range(5):
idx = r * 5 + c
# Start with the state toggled by the button at this location
val = grid[idx]
# Toggle for each neighbor
neighbors = []
if r > 0: neighbors.append(((r-1) * 5) + c) # Up
if r < 4: neighbors.append(((r+1) * 5) + c) # Down
if c > 0: neighbors.append((r * 5) + (c - 1)) # Left
if c < 4: neighbors.append((r * 5) + (c + 1)) # Right
for n_idx in neighbors:
val ^= grid[n_idx]
result_bits.append(str(val))
# The resulting grid must match this specific pattern
# Pattern: A diamond/checkerboard-like shape of lights
target = "1111111011101011101111111"
return "".join(result_bits) == target
def mystery(x):
# Input must be a positive integer not too large
if not isinstance(x, int):
return False
if x <= 0 or x > 10**12:
return False
# Check perfect square
r = int(x ** 0.5)
if r * r != x:
return False
# Check perfect cube
# Use integer cube root via rounding
c = int(round(x ** (1/3)))
if c ** 3 != x:
return False
# Digit sum must be a perfect square
digit_sum = sum(int(d) for d in str(x))
s = int(digit_sum ** 0.5)
if s * s != digit_sum:
return False
# Specific modular condition
if x % 123456789 != 67646187:
return False
return True
def mystery(x):
# Input must be a binary string of length 40
if not isinstance(x, str) or len(x) != 40:
return False
if any(c not in '01' for c in x):
return False
# Target value to reach
target = 24066084036000
total = 0
# Calculate weighted sum based on the set bits
for i, c in enumerate(x):
if c == '1':
# Weights are derived from a cubic polynomial
# creating a set of large integers
w = (i + 10000) * (i + 20000) * (i + 30000)
total += w
return total == target
def mystery(x):
# x must be a 12-character hex string (lowercase)
if not isinstance(x, str) or len(x) != 12:
return False
if not all(c in '0123456789abcdef' for c in x):
return False
# convert to integer
try:
val = int(x, 16)
except:
return False
if val >= (1 << 48):
return False # should not happen if length 12, but just in case
# Feistel network parameters
K = [0x123456, 0x234567, 0x345678, 0x456789]
C = [0x111111, 0x222222, 0x333333, 0x444444]
rounds = 4
# split into left and right 24-bit halves
l = val >> 24
r = val & 0xFFFFFF
for i in range(rounds):
# round function: (right + key) XOR constant
f = ((r + K[i]) & 0xFFFFFF) ^ C[i]
l, r = r, l ^ f
# combine halves
encrypted = (l << 24) | r
target = 0x354414229898
return encrypted == target
def mystery(x):
# Input must be a string of length 10
if not isinstance(x, str) or len(x) != 10:
return False
# Only allow characters 'a', 'b', 'c', 'd', 'e'
if any(c not in 'abcde' for c in x):
return False
# Initial state of the machine: 4 registers
state = [0, 1, 2, 3]
# Process the instructions
for cmd in x:
if cmd == 'a':
# Mix 0 and 1, XOR 1 with 2
state[0] = (state[0] + state[1]) % 256
state[1] ^= state[2]
elif cmd == 'b':
# Mix 1 and 2, XOR 2 with 3
state[1] = (state[1] + state[2]) % 256
state[2] ^= state[3]
elif cmd == 'c':
# Mix 2 and 3, XOR 3 with 0
state[2] = (state[2] + state[3]) % 256
state[3] ^= state[0]
elif cmd == 'd':
# Mix 3 and 0, XOR 0 with 1
state[3] = (state[3] + state[0]) % 256
state[0] ^= state[1]
elif cmd == 'e':
# Rotate registers left
state = state[1:] + state[:1]
# The final state must match this specific configuration
return state == [9, 1, 9, 10]
def mystery(x):
# x must be a positive integer
if not isinstance(x, int) or x <= 0:
return False
# For each i from 2 to 20, the remainder when x is divided by i must be i-1.
for i in range(2, 21):
if x % i != i - 1:
return False
return True