def mystery(x):
# Input must be an 8-character string
if not isinstance(x, str) or len(x) != 8:
return False
# Convert characters to ASCII integers
v = [ord(c) for c in x]
# Constraint 1: The sum of the ASCII values must be exactly 695
if sum(v) != 695:
return False
# Constraint 2: A cyclic XOR transformation must match the target
# The transformation is: next_val = ((current_char XOR next_char) + 42) % 256
# Note: The last character is XORed with the first character (cyclic)
target = [101, 86, 58, 107, 124, 52, 116, 126]
transformed = []
for i in range(8):
# XOR current character with the next one (wrapping around at the end)
xor_val = v[i] ^ v[(i + 1) % 8]
# Add a constant offset and keep it within byte range
val = (xor_val + 42) & 0xFF
transformed.append(val)
return transformed == target
def mystery(x):
if not isinstance(x, str) or len(x) != 8:
return False
v = [ord(c) for c in x]
# Constraint 1: Sum of ASCII values must equal 879
if sum(v) != 879:
return False
# Constraint 2: Cyclic XOR transformation must match target
# For each position i, compute (v[i] XOR v[i+1]) + 35
target = [47, 41, 40, 40, 36, 52, 54, 64]
transformed = []
for i in range(8):
xor_val = v[i] ^ v[(i + 1) % 8]
val = (xor_val + 35) & 0xFF
transformed.append(val)
return transformed == target
def mystery(x):
# Input must be a 6-character string
if not isinstance(x, str) or len(x) != 6:
return False
v = [ord(c) for c in x]
# Constraint 1: Cyclic Transformation
# The sum of adjacent characters (wrapping around) XORed with the index
# must match the target list.
target = [189, 202, 203, 199, 160, 158]
transformed = []
for i in range(6):
# Calculate (Current Char + Next Char) XOR Index
val = (v[i] + v[(i + 1) % 6]) ^ i
transformed.append(val)
if transformed != target:
return False
# Constraint 2: Non-linear Modular Arithmetic
# A specific combination of characters must satisfy this modulo equation.
if (v[0] * v[2] + v[4]) % 1337 != 1030:
return False
return True
def mystery(x):
if not isinstance(x, str) or len(x) != 7:
return False
v = [ord(c) for c in x]
# Constraint 1: Product modulo constraint
if (v[0] * v[3] * v[6]) % 12345 != 11489:
return False
# Constraint 2: Rotational XOR chain
chain = v[0]
for i in range(1, 7):
chain = (chain ^ v[i]) + i
if chain % 256 != 110:
return False
# Constraint 3: Alternating sum constraint
alt_sum = v[0] - v[1] + v[2] - v[3] + v[4] - v[5] + v[6]
if alt_sum != 95:
return False
return True
def mystery(x):
# Input must be a 9-character string
if not isinstance(x, str) or len(x) != 9:
return False
v = [ord(c) for c in x]
# Imagine the 9 characters as a 3x3 grid:
# 0 1 2
# 3 4 5
# 6 7 8
# Constraint 1: Row Sums (Arithmetic)
# The sum of ASCII values in each row must match these targets.
if sum(v[0:3]) != 291: return False
if sum(v[3:6]) != 291: return False
if sum(v[6:9]) != 187: return False
# Constraint 2: Column XOR Sums
# The XOR sum of each column must match these targets.
if (v[0] ^ v[3] ^ v[6]) != 94: return False
if (v[1] ^ v[4] ^ v[7]) != 30: return False
if (v[2] ^ v[5] ^ v[8]) != 63: return False
# Constraint 3: Main Diagonal Product (Modulo 257)
# The product of the main diagonal (indices 0, 4, 8) modulo 257.
if (v[0] * v[4] * v[8]) % 257 != 103: return False
# Constraint 4: Anti-Diagonal Sum
# The sum of the anti-diagonal (indices 2, 4, 6).
if (v[2] + v[4] + v[6]) != 321: return False
# Constraint 5: Local relationship
# The absolute difference between top-middle (1) and middle-left (3).
if abs(v[1] - v[3]) != 7: return False
return True
def mystery(x):
if not isinstance(x, str) or len(x) != 5:
return False
v = [ord(c) for c in x]
# Constraint 1: Weighted sum modulo prime
if (v[0]*7 + v[1]*13 + v[2]*19 + v[3]*23 + v[4]*29) % 8191 != 7649:
return False
# Constraint 2: XOR chain with left shifts
xor_chain = v[0]
for i in range(1, 5):
xor_chain = (xor_chain << 1) ^ v[i]
if xor_chain % 512 != 464:
return False
# Constraint 3: Product of odd-indexed positions
if (v[1] * v[3]) % 1009 != 587:
return False
return True
def mystery(x):
# Input must be an 8-character string
if not isinstance(x, str) or len(x) != 8:
return False
v = [ord(c) for c in x]
# Constraint 0: Range check
# All characters must be standard printable ASCII (32-126)
if any(c < 32 or c > 126 for c in v):
return False
# Constraint 1: Pairwise Sums
# The sum of disjoint pairs (v[0]+v[1], v[2]+v[3], etc.) must match targets.
sum_targets = [163, 226, 201, 96]
current_sums = [v[2*i] + v[2*i+1] for i in range(4)]
if current_sums != sum_targets:
return False
# Constraint 2: Linking XORs
# The XOR of linking pairs (v[1]^v[2], v[3]^v[4], etc.) wrapping around
# must match targets.
# Pairs are: (1,2), (3,4), (5,6), (7,0)
xor_targets = [92, 19, 69, 76]
current_xors = [(v[2*i+1] ^ v[(2*i+2)%8]) for i in range(4)]
if current_xors != xor_targets:
return False
# Constraint 3: Modular Checksum
# The sum of squares of all values modulo 1009 must equal 791.
if sum(val**2 for val in v) % 1009 != 791:
return False
return True
def mystery(x):
if not isinstance(x, str) or len(x) != 8:
return False
v = [ord(c) for c in x]
# Constraint 1: Sum of ASCII values
if sum(v) != 799:
return False
# Constraint 2: Modular product constraint
# Product of characters at positions 0, 3, and 7
if (v[0] * v[3] * v[7]) % 9973 != 7404:
return False
# Constraint 3: Rotating XOR pattern
# Each character XORed with the character 3 positions ahead (wrapping)
target = [19, 6, 16, 19, 81, 10, 17, 88]
xor_pattern = [(v[i] ^ v[(i+3)%8]) for i in range(8)]
if xor_pattern != target:
return False
# Constraint 4: Alternating weighted sum using prime multipliers
weighted = (v[0]*2 - v[1]*3 + v[2]*5 - v[3]*7 + v[4]*11 - v[5]*13 + v[6]*17 - v[7]*19)
if weighted != 644:
return False
return True
def mystery(x):
# Input must be a 10-character string
if not isinstance(x, str) or len(x) != 10:
return False
v = [ord(c) for c in x]
# Constraint 1: Exact Sum
# The sum of all ASCII values must be 999
if sum(v) != 999:
return False
# Constraint 2: Cyclic XOR Chain
# Each character XORed with the next one (wrapping around) must match the target
target = [44, 11, 1, 40, 44, 18, 7, 17, 23, 49]
xor_chain = [(v[i] ^ v[(i+1)%10]) for i in range(10)]
if xor_chain != target:
return False
# Constraint 3: Weighted Sum Checksum
# The sum of each character multiplied by its 1-based index, modulo 1000
weighted_sum = sum(v[i] * (i+1) for i in range(10))
if weighted_sum % 1000 != 742:
return False
# Constraint 4: Bitwise Shift Relationship
# A specific relationship between the first character and the sixth character
# v[0] left shifted by 2, XORed with v[5] right shifted by 2
if ((v[0] << 2) ^ (v[5] >> 2)) != 276:
return False
return True
def mystery(x):
if not isinstance(x, str) or len(x) != 7:
return False
v = [ord(c) for c in x]
# Constraint 1: Sum of ASCII values must equal 765
if sum(v) != 765:
return False
# Constraint 2: Cyclic XOR transformation with offset
# For each position i, compute (v[i] XOR v[(i+1)%7]) + 50
target = [102, 60, 57, 67, 73, 61, 102]
xor_pattern = [(v[i] ^ v[(i+1)%7]) + 50 for i in range(7)]
if xor_pattern != target:
return False
# Constraint 3: Modular product constraint
# Product of characters at positions 0, 3, and 6 modulo a large prime
if (v[0] * v[3] * v[6]) % 10007 != 16:
return False
return True