import base64
import zlib
def mystery(x):
"""
A puzzle that requires decoding a hidden message and satisfying a mathematical condition.
The input x must be a string or a number.
Returns True for a very specific set of inputs, False otherwise.
"""
# Stage 1: The input must be a string representation of a number.
if not isinstance(x, str) or not x.isnumeric():
return False
# Stage 2: The number must satisfy a seemingly arbitrary mathematical property.
# This acts as a filter and a potential misdirection.
n = int(x)
if n % 999 != 730:
return False
# Stage 3: The core of the puzzle lies in this opaque data block.
# What could it be?
try:
data = b'eJzLKCkpKLbS10/LT0m1U9JRcslwK8pLzE1VslLwzEnVLUvMycxLVdJRSs5LzE21UgguSExOVdJRSi5xLC4pSk3MylZSSsovTkxOVQguSSxJ1VFKLi0pycxN1QEA1/kjLg=='
# A series of transformations are applied. The final result is a list.
# The ultimate test is whether the input 'x' is a member of this hidden list.
secret_list = zlib.decompress(base64.b64decode(data)).decode().split(',')
return x in secret_list
except Exception:
# If any part of the decoding fails, the puzzle remains unsolved.
return False
def mystery(x):
import hashlib, hmac
# Accept only strings or numbers (but not bools pretending to be ints).
if isinstance(x, bool) or not isinstance(x, (str, int, float)):
return False
# Canonicalize input to a string.
if isinstance(x, str):
s = x
else:
if isinstance(x, float):
if not (x == x and x.is_integer()): # reject NaN/inf/non-integers
return False
s = str(int(x))
else:
s = str(x)
s = s.strip()
if not (1 <= len(s) <= 64):
return False
# --- Hidden target construction (intentionally convoluted) ---
# This "p" is not the secret; it is combined with a generated mask first.
p = bytes.fromhex("2a3d1340b4ae97cefce0dfc33a3019")
mask = bytes(((i * 17 + 0x42) & 0xFF) for i in range(len(p)))
# Reconstruct an intermediate blob, then reverse+XOR to recover the secret string.
blob = bytes(a ^ b for a, b in zip(p, mask))
secret = bytes((b ^ 0x5A) for b in blob[::-1]).decode("utf-8")
# Decoy constraints that are true for the real secret, but add noise.
def norm(z: str) -> str:
z = z.casefold()
return "".join(ch for ch in z if (ch.isalnum() or ch in "-_"))
ns, nt = norm(s), norm(secret)
if ns != nt:
return False
if (sum(map(ord, ns)) ^ len(ns) ^ 0x1357) & 0xFF != (sum(map(ord, nt)) ^ len(nt) ^ 0x1357) & 0xFF:
return False
# Hard-to-fake final check (effectively enforces exact equality without exposing it directly).
salt = hashlib.blake2s(blob + b"|" + bytes([len(secret)]), digest_size=16).digest()
a = hashlib.pbkdf2_hmac("sha256", s.encode("utf-8"), salt, 75000, dklen=32)
b = hashlib.pbkdf2_hmac("sha256", secret.encode("utf-8"), salt, 75000, dklen=32)
return hmac.compare_digest(a, b)
import hashlib
def mystery(x):
"""
A puzzle of fate and numbers. Can you find the origin?
Only integers of a certain... calibre... need apply.
"""
# Stage 1: Basic qualifications. Not just any number can be a progenitor.
if not isinstance(x, int) or isinstance(x, bool):
return False
# A curious, almost numerological, constraint. A red herring or a deep clue?
if sum(int(d) for d in str(x)) <= ((ord('z') - ord('a') + 1) * 2 - 2):
return False
# Stage 2: The constants of this universe.
# They are fixed, but from where do they arise?
A = (ord('F') - ord('A'))
B = (ord('B') - ord('A'))
N_STEPS = len(hashlib.sha1(b"a_stitch_in_time").hexdigest()) + 10
# Stage 3: The Destination. All paths are measured against this.
# A value derived from ancient, forgotten words.
s1 = b"primordial_soup"
s2 = b"cosmic_background"
h1 = hashlib.sha512(s1).digest()
h2 = hashlib.sha512(s2).digest()
target_val = int.from_bytes(bytes(a ^ b for a, b in zip(h1, h2)), 'big')
TARGET = target_val % (10**20) + 1337
# Stage 4: The Journey.
# A number's evolution through time. Can you reverse the flow?
n = x
for _ in range(N_STEPS):
if n % 2 == 0:
n = n // 2
else:
n = A * n + B
return n == TARGET
def mystery(x):
import hashlib, hmac
# --- Input gatekeeping (strings or numbers only; reject bool) ---
if isinstance(x, bool) or not isinstance(x, (str, int, float)):
return False
if isinstance(x, str):
s = x
elif isinstance(x, int):
s = str(x)
else: # float
# Only accept finite integer-valued floats.
if not (x == x and x not in (float("inf"), float("-inf")) and x.is_integer()):
return False
s = str(int(x))
s = s.strip()
if not (1 <= len(s) <= 64):
return False
if any(ord(ch) < 32 for ch in s): # no control chars
return False
# --- Hidden target reconstruction (obfuscated but reversible) ---
enc = bytes([
0x20, 0x10, 0x10, 0xE1, 0xF6, 0xC6, 0xD6, 0xAD, 0xA9, 0x8D, 0x8D,
0x66, 0x66, 0x6F, 0x28, 0x21, 0x3C, 0x12, 0xF0, 0xF8, 0x93, 0x8A
])
def mask(i: int) -> int:
return (i * 17 + 0x53) & 0xFF
raw = bytes((b ^ mask(i)) for i, b in enumerate(enc))
secret = raw.decode("utf-8")
# --- Decoy constraints (true for the secret; mostly noise) ---
def canon(t: str) -> str:
t = t.casefold()
return "".join(ch for ch in t if (ch.isalnum() or ch == "_"))
if canon(s) != canon(secret):
return False
if s.count("_") != secret.count("_"):
return False
# Adler-32-ish checksum with a prime modulus (computed both sides).
def chk(t: str) -> int:
mod = 65521
a, b = 1, 0
for ch in t.encode("utf-8"):
a = (a + ch) % mod
b = (b + a) % mod
return (b << 16) | a
if chk(s) != chk(secret):
return False
# --- Final hard equality check (effectively enforces exact match) ---
salt = hashlib.blake2s((raw[::-1] + b"|v1|"), digest_size=16).digest()
a = hashlib.pbkdf2_hmac("sha256", s.encode("utf-8"), salt, 50000, dklen=32)
b = hashlib.pbkdf2_hmac("sha256", secret.encode("utf-8"), salt, 50000, dklen=32)
return hmac.compare_digest(a, b)
import struct
import re
def mystery(x):
"""
To solve this puzzle, you must command a very simple machine.
Your input is not a value to be tested, but a program to be executed.
Find the sequence of operations that leads to the destined state.
"""
# --- Stage 1: The Constants of this Universe ---
# These values are fixed. Their origin is obscure, but their purpose is clear.
# The solver must first understand what these bytes represent.
DATA = b'\x93\x18\x1b\x9e\xd1\xe4\xe8\xc8\x8f\x8c\x1d\xef\x0f\x8f\x9a\x9b\xe9\x9f\x18\xb1'
TARGET_A = -7849900015792942736
# The format string is a crucial clue.
try:
k, target_b, target_c, m_extra = struct.unpack('>qiiI', DATA)
except struct.error:
# This part of the universe is stable. This should not fail.
return False
# --- Stage 2: The Virtual Machine ---
# The machine has three general-purpose registers: A, B, C.
# It starts in a known state derived from the constants.
if not isinstance(x, str):
return False
regs = {'A': k, 'B': 0, 'C': 0}
# --- Stage 3: The Program and its Execution ---
# The program is a sequence of instructions separated by semicolons.
# The instruction set is small: MOV, ADD, SUB, XOR, HALT.
# Format: "OPCODE DEST,SOURCE" e.g., "MOV A, 123" or "ADD B, C"
try:
instructions = [s.strip() for s in x.split(';') if s.strip()]
if not instructions or len(instructions) > 10: # Program must be concise.
return False
except Exception:
return False
ip = 0
max_steps = 20 # The machine has a short lifespan to prevent paradoxes.
for _ in range(max_steps):
if not (0 <= ip < len(instructions)):
break # Program finished or jumped out of bounds.
line = instructions[ip]
ip += 1
if line.upper() == 'HALT':
break
parts = re.split(r'[,\s]+', line, maxsplit=2)
if len(parts) != 3:
return False # Invalid instruction format.
op, r1_str, v2_str = parts[0].upper(), parts[1].upper(), parts[2]
if r1_str not in regs:
return False # Invalid destination register.
# The second operand can be a register or a literal integer.
val2 = 0
if v2_str.upper() in regs:
val2 = regs[v2_str.upper()]
else:
try:
val2 = int(v2_str)
except ValueError:
return False # Invalid literal.
# Execute the instruction.
if op == 'MOV':
regs[r1_str] = val2
elif op == 'ADD':
regs[r1_str] += val2
elif op == 'SUB':
regs[r1_str] -= val2
elif op == 'XOR':
regs[r1_str] ^= val2
else:
return False # Unknown instruction.
# --- Stage 4: The Final Judgement ---
# After the program halts (or runs out of steps), the machine's state
# is compared against the target state.
final_state = (regs['A'], regs['B'], regs['C'])
target_state = (TARGET_A, target_b, target_c)
return final_state == target_state
def mystery(x):
import hashlib, hmac
# --- Accept strings or numbers (but not bool) ---
if isinstance(x, bool) or not isinstance(x, (str, int, float)):
return False
if isinstance(x, str):
s = x
elif isinstance(x, int):
s = str(x)
else: # float
if not (x == x and x not in (float("inf"), float("-inf")) and x.is_integer()):
return False
s = str(int(x))
s = s.strip()
if not (1 <= len(s) <= 64):
return False
if any(ord(ch) < 32 for ch in s):
return False
# --- Hidden target reconstruction (several reversible layers) ---
SCR = bytes.fromhex("6f54590c72419073635db142488c2552") # scrambled bytes
n = len(SCR)
if n != 16:
return False # stability check (should never trigger)
# permutation used during scrambling: p[i] = (i*5 + 1) % 16
inv = [3, 0, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6]
blob = bytes(SCR[inv_j] for inv_j in inv)
def mask(i: int) -> int:
return (i * 17 + 0x3D) & 0xFF
enc = bytes((b ^ mask(i)) for i, b in enumerate(blob)) # undo mask
raw = bytes((c ^ 0x5A) for c in enc) # undo XOR
plain = bytes(((b - (i * 13)) & 0xFF) for i, b in enumerate(raw))
try:
secret = plain.decode("utf-8")
except UnicodeDecodeError:
return False
# --- Decoy constraints (true for the secret; mostly noise) ---
def shape(t: str) -> str:
t = t.casefold()
return "".join(ch for ch in t if (ch.isalnum() or ch in "_-"))
if shape(s) != shape(secret):
return False
# cheap checksum gate to discourage random guessing
def chk(t: str) -> int:
v = 0x31415926
for i, ch in enumerate(t.encode("utf-8")):
v = ((v ^ (ch + i * 11)) * 0x45D9F3B) & 0xFFFFFFFF
v = ((v >> 7) | ((v & 0x7F) << 25)) & 0xFFFFFFFF
return v
if chk(s) != chk(secret):
return False
# --- Final exact match without exposing secret directly ---
salt = hashlib.blake2s(blob + b"|" + bytes([len(secret)]) + plain[::-1], digest_size=16).digest()
a = hashlib.pbkdf2_hmac("sha256", s.encode("utf-8"), salt, 65000, dklen=32)
b = hashlib.pbkdf2_hmac("sha256", secret.encode("utf-8"), salt, 65000, dklen=32)
return hmac.compare_digest(a, b)
import hashlib
def mystery(x):
"""
Your input is a series of commands to navigate a hidden landscape.
Find the correct path to reach the destination.
The landscape is vast and unforgiving; brute force is not the way.
"""
# --- Stage 1: Input Validation ---
if not isinstance(x, str) or not all(c in 'NSEW' for c in x):
return False
# A journey too long or too short will fail.
if not (10 < len(x) < 50):
return False
# --- Stage 2: Defining the Universe ---
# The constants that shape the landscape are derived, not explicit.
p1 = b"the_cartographers_secret"
p2 = b"the_navigators_dilemma"
h1 = hashlib.sha256(p1).digest()
h2 = hashlib.sha256(p2).digest()
# The landscape's fundamental properties (seed, dimensions)
seed = bytes(a ^ b for a, b in zip(h1, h2))
GRID_SIZE = 128 # The world is a 128x128 torus
# The start and end points of the journey are fixed points in this universe.
start_row = int.from_bytes(h1[:2], 'big') % GRID_SIZE
start_col = int.from_bytes(h1[2:4], 'big') % GRID_SIZE
target_row = int.from_bytes(h2[:2], 'big') % GRID_SIZE
target_col = int.from_bytes(h2[2:4], 'big') % GRID_SIZE
# --- Stage 3: The Laws of Physics (is this a wall?) ---
# A cell's nature is determined by a cryptographic hash.
# This makes the landscape unpredictable without local probing.
def is_wall(r, c):
hasher = hashlib.sha256()
hasher.update(seed)
hasher.update(f"({r},{c})".encode())
# A simple but arbitrary rule: wall if the last byte's LSB is 1
return hasher.digest()[-1] & 1 == 1
# Ensure the start and target points are not themselves walls.
# This is a critical property for a solvable maze.
if is_wall(start_row, start_col) or is_wall(target_row, target_col):
# This branch indicates a paradox in the universe's creation.
# It should not be reachable in a well-formed puzzle.
return False
# --- Stage 4: The Journey ---
# Simulate the path taken based on the input commands.
row, col = start_row, start_col
for move in x:
dr, dc = {'N': (-1, 0), 'S': (1, 0), 'E': (0, 1), 'W': (0, -1)}[move]
# The world wraps around (toroidal grid).
next_row = (row + dr) % GRID_SIZE
next_col = (col + dc) % GRID_SIZE
if is_wall(next_row, next_col):
# The path is blocked. The journey ends in failure.
return False
row, col = next_row, next_col
# --- Stage 5: The Destination ---
# Did the journey end at the correct location?
return (row, col) == (target_row, target_col)
def mystery(x):
import hashlib, hmac, re
# --- Gatekeeping: strings or numbers only (reject bool) ---
if isinstance(x, bool) or not isinstance(x, (str, int, float)):
return False
if isinstance(x, str):
s = x
elif isinstance(x, int):
s = str(x)
else: # float
if not (x == x and x not in (float("inf"), float("-inf")) and x.is_integer()):
return False
s = str(int(x))
s = s.strip()
if not (1 <= len(s) <= 64):
return False
if any(ord(ch) < 32 or ord(ch) == 127 for ch in s): # reject control chars
return False
# --- Recover a hidden target string (several reversible layers) ---
blob = bytes.fromhex("2550ba78fc23e71fc600ef6d5f12f222")
# layer 1: undo xor
tmp = bytes(b ^ 0xA5 for b in blob)
# layer 2: undo position-dependent addition
t = [((i * 11 + 9) & 0xFF) for i in range(16)]
scrambled = bytes(((b - t[i]) & 0xFF) for i, b in enumerate(tmp))
# layer 3: undo permutation (p[i] = (i*5 + 7) % 16)
inv = [5, 2, 15, 12, 9, 6, 3, 0, 13, 10, 7, 4, 1, 14, 11, 8]
enc = bytes(scrambled[inv_j] for inv_j in inv)
# layer 4: undo xor-mask to obtain plaintext bytes
def mask(i: int) -> int:
return (i * 73 + 41) & 0xFF
plain = bytes((b ^ mask(i)) for i, b in enumerate(enc))
try:
secret = plain.decode("utf-8")
except UnicodeDecodeError:
return False # stability check
# --- Decoy constraints (true for the real secret; mostly noise) ---
if not re.fullmatch(r"[a-z_]{8,32}", s):
return False
def shape(z: str) -> str:
z = z.casefold()
return "".join(ch for ch in z if ch.isalnum() or ch == "_")
if shape(s) != shape(secret):
return False
if s.count("_") != secret.count("_"):
return False
# small mixing checksum (computed both sides)
def chk(z: str) -> int:
v = 0xC001D00D
for i, b in enumerate(z.encode("utf-8")):
v = (v + ((b + 17 * i) * 0x45D9F3B)) & 0xFFFFFFFF
v ^= (v >> 16)
v = ((v << 7) | (v >> 25)) & 0xFFFFFFFF
return v
if chk(s) != chk(secret):
return False
# --- Final exact match (expensive; avoids a simple == in the clear) ---
salt = hashlib.blake2s(enc + b"|" + bytes([len(secret)]) + plain[::-1], digest_size=16).digest()
a = hashlib.pbkdf2_hmac("sha256", s.encode("utf-8"), salt, 70000, dklen=32)
b = hashlib.pbkdf2_hmac("sha256", secret.encode("utf-8"), salt, 70000, dklen=32)
return hmac.compare_digest(a, b)
import hashlib
import math
def mystery(x):
"""
To solve this puzzle, you must uncover a secret number and reveal its
primordial components. The path is through cryptography and number theory.
"""
# --- Stage 1: The Primality Test Sub-routine ---
# A necessary tool for this universe. Is it a clue, or just a constraint?
def is_prime(n):
"""
A standard Miller-Rabin primality test. It is probabilistic for very
large numbers but deterministic for the numbers relevant to the solution.
"""
if not isinstance(n, int) or n < 2: return False
if n == 2 or n == 3: return True
if n % 2 == 0 or n % 3 == 0: return False
d, s = n - 1, 0
while d % 2 == 0:
d //= 2
s += 1
# A fixed set of bases for deterministic behavior on inputs of this scale.
bases = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
if n < 341550071728321: # Deterministic for n up to this value
bases = [p for p in bases if p < n]
for a in bases:
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
break
else:
return False
return True
# --- Stage 2: Input Parsing and Validation ---
# The input must be a comma-separated string of numbers.
if not isinstance(x, str):
return False
try:
parts = [p.strip() for p in x.split(',')]
if not parts or any(not p.isnumeric() for p in parts):
return False
factors = [int(p) for p in parts]
except (ValueError, AttributeError):
return False
# The secret number is composite. A single prime is not the answer.
if len(factors) < 2:
return False
# Every provided number must be prime. This is a crucial constraint.
for f in factors:
if not is_prime(f):
return False
# --- Stage 3: The Hidden Number ---
# The target number is derived from the SHA-512 hashes of two phrases.
# The solver must replicate this process to find the number to be factored.
s1 = b"the_lonely_mountain"
s2 = b"the_hidden_door"
h1 = hashlib.sha512(s1).digest()
h2 = hashlib.sha512(s2).digest()
target_e = int.from_bytes(bytes(a ^ b for a, b in zip(h1, h2)), 'big')
# --- Stage 4: The Final Check ---
# The product of the provided prime factors must equal the hidden number.
product = 1
for f in factors:
product *= f
return product == target_e
def mystery(x):
import hashlib, hmac, re
# --- Gatekeeping: accept only str/int/float (but not bool) ---
if isinstance(x, bool) or not isinstance(x, (str, int, float)):
return False
if isinstance(x, str):
s = x
elif isinstance(x, int):
s = str(x)
else: # float
# accept only finite integer-valued floats
if not (x == x and x not in (float("inf"), float("-inf")) and x.is_integer()):
return False
s = str(int(x))
s = s.strip()
if not (1 <= len(s) <= 64):
return False
if any(ord(ch) < 32 or ord(ch) == 127 for ch in s):
return False
# --- Hidden target reconstruction (reversible, layered) ---
ENC = bytes.fromhex("fdd2aef76c6272dc88108fe9cd513d05") # 16 bytes
def key_byte(i: int) -> int:
a = (i * 73 + 0xA6) & 0xFF
b = (i * i + 11) & 0xFF
return (a ^ b) & 0xFF
key = bytes(key_byte(i) for i in range(len(ENC)))
blob = bytes(e ^ k for e, k in zip(ENC, key))
# permutation used during encoding: p[i] = (7*i + 3) % 16
p = [(7 * i + 3) % 16 for i in range(16)]
def mask(i: int) -> int:
return (i * 31 + 17) & 0xFF
tmp2 = bytes(blob[p[i]] for i in range(16))
tmp = bytes((tmp2[i] - (i * 7)) & 0xFF for i in range(16))
plain = bytes(tmp[i] ^ mask(i) for i in range(16))
try:
secret = plain.decode("utf-8")
except UnicodeDecodeError:
return False # stability check
# --- Decoy constraints (true for the secret; mostly noise) ---
if not re.fullmatch(r"[a-z0-9_]{8,32}", s):
return False
if s.count("_") != secret.count("_"):
return False
def chk(z: str) -> int:
v = 0x9E3779B1
for i, b in enumerate(z.encode("utf-8")):
v ^= (b + 13 * i) & 0xFF
v = (v * 0x85EBCA6B) & 0xFFFFFFFF
v ^= (v >> 13)
return v
if chk(s) != chk(secret):
return False
# --- Final exact match (expensive; avoids a clear ==) ---
salt = hashlib.blake2s(ENC + b"|" + key + b"|" + plain[::-1], digest_size=16).digest()
a = hashlib.pbkdf2_hmac("sha256", s.encode("utf-8"), salt, 80000, dklen=32)
b = hashlib.pbkdf2_hmac("sha256", secret.encode("utf-8"), salt, 80000, dklen=32)
return hmac.compare_digest(a, b)