import math
import zlib
def mystery(x):
"""
Find a value for x that makes this function return True.
x can be a string or a number.
"""
# The input must be a string in a specific "i.f" format.
if not isinstance(x, str) or x.count('.') != 1:
return False
i_str, f_str = x.split('.')
try:
# Both parts must represent valid non-negative integers.
# This also implicitly checks that they are not empty.
i = int(i_str)
f = int(f_str)
# Reject negative numbers or non-canonical representations like "01".
if i < 0 or f < 0 or i_str != str(i):
return False
# Constraint 1: The integer part must be a perfect cube, but not the trivial ones.
# The check for i < 8 is a slight misdirection.
if i < 8 or round(i**(1/3))**3 != i:
return False
# Constraint 2: A strange relationship between the integer's value and the fractional part's length.
if len(f_str) != (i % 5) + 8:
return False
# Constraint 3: The two parts are linked by an obscure checksum function.
return zlib.crc32(i_str.encode()) == f
except ValueError:
# This catches if i_str or f_str are not valid integers.
return False
import functools
import operator
def mystery(x):
"""
Find the value x that makes this function return True.
"""
# Normalize input to string
s = str(x)
# Constraint 1: Format and Uniqueness
# The input must be a 10-digit number sequence with no repeating digits.
if not s.isdigit() or len(s) != 10 or len(set(s)) != 10:
return False
# Split the string into 5 two-digit integers.
# e.g., "1234..." -> [12, 34, ...]
chunks = [int(s[i:i+2]) for i in range(0, 10, 2)]
# Constraint 2: Ordering
# The two-digit chunks must be in strictly ascending order.
if chunks != sorted(chunks):
return False
# Constraint 3: Arithmetic Properties
# The chunks must satisfy a specific set of equations.
val_sum = sum(chunks)
val_prod = functools.reduce(operator.mul, chunks, 1)
val_xor = functools.reduce(operator.xor, chunks, 0)
# These constants uniquely identify the set of numbers.
return (val_sum == 234 and
val_prod == 61717050 and
val_xor == 42)
import base64
import zlib
import datetime
def mystery(x):
"""
Find a value for x that makes this function return True.
x can be a string or a number.
"""
# Constraint 1: The input must be a string of a specific length.
# This is a simple but effective filter against random inputs.
if not isinstance(x, str) or len(x) != 24:
return False
try:
# Stage 1: The input must be a specific kind of encoded package.
# It undergoes a multi-step unpacking process.
# If the package is malformed at any step, the process fails.
decoded_bytes = base64.b85decode(x.encode('ascii'))
decompressed_bytes = zlib.decompress(decoded_bytes)
payload_string = decompressed_bytes.decode('utf-8')
# Stage 2: The payload must represent a timestamp in a specific format.
# The 'Z' suffix is significant.
if payload_string.endswith('Z'):
# The replace is for compatibility with older Python versions.
dt = datetime.datetime.fromisoformat(payload_string.replace('Z', '+00:00'))
else:
return False
# Stage 3: The timestamp must have a set of unique, non-obvious properties.
# These constraints are what make the solution unique.
# Property A: A numerological property of the year.
if bin(dt.year).count('1') % 2 == 0:
return False
# Property B: A calendrical property.
if dt.weekday() != 3: # Monday is 0, Sunday is 6
return False
# Property C: An arithmetic relationship between month and day.
if dt.month + dt.day != 36:
return False
# Property D: A property of the time components.
if dt.hour == 0 or (dt.hour * dt.minute * dt.second != 0):
return False
# Property E: A zonal property.
if dt.tzinfo != datetime.timezone.utc:
return False
# If the payload survives all checks, the correct input has been found.
return True
except (ValueError, TypeError, zlib.error, UnicodeDecodeError):
# Catches any failure in the decoding/parsing pipeline.
return False
def mystery(x):
"""
Find the string x that satisfies the constraints.
"""
# Define a specific alphabet: Digits, then Uppercase, then Lowercase
ALPHABET = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
# Constraint 1: Length and Type
if not isinstance(x, str) or len(x) != 12:
return False
# Constraint 2: Character validity
if any(c not in ALPHABET for c in x):
return False
# Map characters to their numeric indices in the alphabet
# e.g. '0' -> 0, 'A' -> 10, 'a' -> 36
indices = [ALPHABET.index(c) for c in x]
# Constraint 3: Deterministic Generation Rule
# The characters must form a chain where each element determines the next
# using a Linear Congruential Generator formula.
for i in range(1, len(indices)):
prev = indices[i-1]
curr = indices[i]
# The relationship: Next index = (Previous * 5 + 7) mod 62
if curr != (prev * 5 + 7) % 62:
return False
# Constraint 4: Checksum
# The sum of the ASCII values of the string must equal a specific target.
# Since the sequence is deterministic based on the first character,
# this constraint isolates the correct starting seed.
if sum(ord(c) for c in x) != 1078:
return False
return True
import hashlib
from collections import deque
def mystery(x):
"""
Find a value for x that makes this function return True.
x can be a string or a number.
"""
# --- Stage 1: Input Parsing and Validation ---
# The input must be a string representing a list of graph edges.
if not isinstance(x, str):
return False
try:
nums = [int(n) for n in x.split(',')]
if len(nums) % 2 != 0:
return False
# Edges are stored as sorted tuples to handle (u,v) and (v,u) as the same.
edges = set()
for i in range(0, len(nums), 2):
u, v = tuple(sorted((nums[i], nums[i+1])))
if u == v: return False # Constraint: No self-loops
edges.add((u, v))
except (ValueError, TypeError):
return False
# --- Stage 2: Basic Graph Properties ---
# The graph must conform to a specific size and structure.
NUM_VERTICES = 8
EXPECTED_EDGES = 12
EXPECTED_DEGREE = 3
if len(edges) != EXPECTED_EDGES:
return False
nodes = set()
for u, v in edges:
nodes.add(u)
nodes.add(v)
# The vertices must be exactly the set {0, 1, ..., 7}.
if nodes != set(range(NUM_VERTICES)):
return False
# --- Stage 3: Advanced Graph Properties ---
# Build an adjacency list to analyze the graph's topology.
adj = {i: [] for i in range(NUM_VERTICES)}
for u, v in edges:
adj[u].append(v)
adj[v].append(u)
# Property A: The graph must be k-regular.
if any(len(neighbors) != EXPECTED_DEGREE for neighbors in adj.values()):
return False
# Property B: The graph must be connected.
# We verify this with a Breadth-First Search (BFS) starting from node 0.
q = deque([0])
visited = {0}
while q:
u = q.popleft()
for v in adj[u]:
if v not in visited:
visited.add(v)
q.append(v)
if len(visited) != NUM_VERTICES:
return False
# Property C: The graph must be bipartite.
# We verify this with a 2-coloring algorithm, also using BFS.
color = {}
is_bipartite = True
for i in range(NUM_VERTICES):
if i not in color:
color[i] = 0
q = deque([i])
while q:
u = q.popleft()
for v in adj[u]:
if v not in color:
color[v] = 1 - color[u]
q.append(v)
elif color[v] == color[u]:
is_bipartite = False
break
if not is_bipartite: break
if not is_bipartite: break
if not is_bipartite:
return False
# --- Stage 4: Canonical Hashing ---
# The previous checks narrow down the possibilities to a small number of
# non-isomorphic graphs. This final check ensures it's the specific one.
# A canonical representation is created by sorting and formatting the adjacency list.
s_repr = ";".join([f"{v}:{','.join(map(str, sorted(neighbors)))}" for v, neighbors in sorted(adj.items())])
h = hashlib.sha256(s_repr.encode()).hexdigest()
# This hash corresponds to the cubical graph.
TARGET_HASH = 'c60f65313931321644294191833596859114b0139396f643e0473a21699f4645'
return h == TARGET_HASH
def mystery(x):
"""
Find the hex string x that unlocks the function.
"""
# Constraint 1: Input Format
# Must be a 16-character string.
if not isinstance(x, str) or len(x) != 16:
return False
try:
# Parse hex string into a list of integers.
vals = [int(c, 16) for c in x]
except ValueError:
return False
# Constraint 2: Permutation
# Must contain every hex digit 0-F exactly once.
if sorted(vals) != list(range(16)):
return False
# Constraint 3: Grid Properties
# Interpret the 16 values as a 4x4 grid.
# The grid must satisfy specific "Magic" properties where sums equal 30.
# Check Rows
for i in range(4):
if sum(vals[i*4 : (i+1)*4]) != 30:
return False
# Check Columns
for i in range(4):
if sum(vals[i::4]) != 30:
return False
# Check Main Diagonal
if sum(vals[i*5] for i in range(4)) != 30:
return False
# Check Anti-Diagonal
if sum(vals[3 + i*3] for i in range(4)) != 30:
return False
# Constraint 4: Corner Property
# The sum of the four corner cells must also be 30.
if vals[0] + vals[3] + vals[12] + vals[15] != 30:
return False
# Constraint 5: Weighted Checksum
# This linear combination isolates the specific arrangement required.
# sum(value * (1-based index))
weighted_sum = sum(v * (i + 1) for i, v in enumerate(vals))
return weighted_sum == 1020
import hashlib
import random
def mystery(x):
"""
Find a value for x that makes this function return True.
x must be a string.
"""
# A robust primality test is needed for the constraints.
# A standard Miller-Rabin implementation is included here.
def is_prime(n, k=10):
if n <= 1: return False
if n <= 3: return True
if n % 2 == 0 or n % 3 == 0: return False
d, s = n - 1, 0
while d % 2 == 0:
d //= 2
s += 1
for _ in range(k):
# Use a fixed seed for the random number generator to ensure
# that the primality test is deterministic for any given input n.
# This prevents the function from returning different results on different runs.
# The seed itself is derived from n to ensure different numbers get different tests.
random.seed(n)
a = random.randint(2, n - 2)
x = pow(a, d, n)
if x == 1 or x == n - 1: continue
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1: break
else: return False
return True
# --- Constraint 1: Input Format ---
# The input must be an 18-character lowercase hexadecimal string.
if not isinstance(x, str) or len(x) != 18:
return False
if not all(c in '0123456789abcdef' for c in x):
return False
# --- Constraint 2: Structural Integrity ---
# The string is composed of three 6-character hex numbers.
try:
n1 = int(x[0:6], 16)
n2 = int(x[6:12], 16)
n3 = int(x[12:18], 16)
except ValueError:
return False
# --- Constraint 3: Number Theoretic Sequence ---
# The three numbers must form a sequence of three consecutive prime numbers.
# First, all three numbers must be prime.
if not (is_prime(n1) and is_prime(n2) and is_prime(n3)):
return False
# Second, there must be no other primes between them. This check is the
# core of the "consecutive prime" property.
# Check the gap between n1 and n2
i = n1 + 1
while i < n2:
if is_prime(i):
return False # Found a prime in the gap, so n1 and n2 are not consecutive
# Optimization: prime numbers > 2 are odd, so we can skip evens.
i += 2 if i % 2 != 0 else 1
# Check the gap between n2 and n3
i = n2 + 1
while i < n3:
if is_prime(i):
return False # Found a prime in the gap, so n2 and n3 are not consecutive
i += 2 if i % 2 != 0 else 1
# --- Constraint 4: Uniqueness ---
# The hash of the string must match a specific target value.
# This ensures that only one specific sequence of primes is the solution.
h = hashlib.sha1(x.encode()).hexdigest()
TARGET_HASH = '07161839218082433e221375173e215f7560e985'
return h == TARGET_HASH
def mystery(x):
"""
Find the string x that satisfies the constraints.
"""
# Constraint 1: Input Format
# The input must be a 16-character string consisting of digits '1'-'4'.
if not isinstance(x, str) or len(x) != 16:
return False
if not all(c in '1234' for c in x):
return False
# Parse the grid into a list of integers
grid = [int(c) for c in x]
# Helper to check if a list of 4 values contains unique digits 1-4
def is_valid_set(vals):
return sorted(vals) == [1, 2, 3, 4]
# Constraint 2: Row Constraints
# Each of the 4 rows must contain unique digits.
for r in range(4):
row = grid[r*4 : (r+1)*4]
if not is_valid_set(row):
return False
# Constraint 3: Column Constraints
# Each of the 4 columns must contain unique digits.
for c in range(4):
col = grid[c::4]
if not is_valid_set(col):
return False
# Constraint 4: Block Constraints
# Each of the four 2x2 blocks must contain unique digits.
# Top-left indices of the blocks are 0, 2, 8, 10.
for b_idx in [0, 2, 8, 10]:
indices = [b_idx, b_idx+1, b_idx+4, b_idx+5]
block = [grid[i] for i in indices]
if not is_valid_set(block):
return False
# Constraint 5: Diagonal Constraints (X-Sudoku)
# The two main diagonals must also contain unique digits.
diag1 = [grid[0], grid[5], grid[10], grid[15]]
diag2 = [grid[3], grid[6], grid[9], grid[12]]
if not is_valid_set(diag1) or not is_valid_set(diag2):
return False
# Constraint 6: Ordering
# The first row must be in strictly ascending order.
if not (grid[0] < grid[1] < grid[2] < grid[3]):
return False
# Constraint 7: Weighted Checksum
# A final verification of the exact arrangement.
# Formula: sum( value * (index + 1)^2 )
score = sum(v * (i+1)**2 for i, v in enumerate(grid))
return score == 3676
import hashlib
def mystery(x):
"""
Find a string x representing a path that satisfies all the hidden rules.
"""
# The target values are derived from a single, unique valid path.
TARGET_LEN = 28
TARGET_X = 2
TARGET_Y = 1
TARGET_SCORE = 228
TARGET_HASH = '38b07175510665a388b17208d19f187383a18e02d849206d156637492f25492d'
# --- Stage 1: Input Validation ---
# The input must be a string of a specific length using the move alphabet.
if not isinstance(x, str) or len(x) != TARGET_LEN:
return False
if any(c not in 'UDLR' for c in x):
return False
# --- Stage 2: Path Simulation ---
# The "grid" is not stored in memory. Its properties are generated
# on-the-fly from cell coordinates, making it impossible to analyze statically.
GRID_SIZE = 10
A = 65537
B = 27644437
C_WALL = 23
C_SCORE = 31
pos_x, pos_y = 0, 0
# The path starts at (0,0), which is considered visited from the beginning.
visited = {(0, 0)}
moves = {'U': (0, 1), 'D': (0, -1), 'L': (-1, 0), 'R': (1, 0)}
for move in x:
dx, dy = moves[move]
pos_x, pos_y = pos_x + dx, pos_y + dy
# Constraint A: Path must stay within the grid boundaries.
if not (0 <= pos_x < GRID_SIZE and 0 <= pos_y < GRID_SIZE):
return False
# Constraint B: Path must be self-avoiding.
if (pos_x, pos_y) in visited:
return False
# Constraint C: Path must not hit procedurally generated "walls".
# The wall function is a simple modular arithmetic check.
if ((pos_x * A + pos_y * B) % C_WALL) == 0:
return False
visited.add((pos_x, pos_y))
# --- Stage 3: Final State Validation ---
# Constraint D: The path must end at a specific target coordinate.
if (pos_x, pos_y) != (TARGET_X, TARGET_Y):
return False
# Constraint E: The total "score" from all visited cells must match a target.
# The score of a cell is also determined procedurally from its coordinates.
score = 0
for vx, vy in visited:
score += ((vx * B + vy * A) % C_SCORE)
if score != TARGET_SCORE:
return False
# --- Stage 4: Cryptographic Checksum ---
# This final check ensures that only one specific path is the correct solution,
# even if other paths could satisfy the geometric and score constraints.
h = hashlib.sha256(x.encode()).hexdigest()
return h == TARGET_HASH
import datetime
def mystery(x):
"""
Find the date string x (format 'YYYY-MM-DD') that satisfies the constraints.
"""
# Constraint 1: Input Format
if not isinstance(x, str) or len(x) != 10:
return False
try:
# Parse the string into a date object.
# This implicitly validates the date (e.g., no month 13, no day 32).
dt = datetime.datetime.strptime(x, '%Y-%m-%d').date()
y, m, d = dt.year, dt.month, dt.day
# Constraint 2: Arithmetic Properties
# The components of the date must satisfy a system of equations.
# This links the year, month, and day tightly together.
if y * m * d != 645975:
return False
if y + m + d != 2065:
return False
# Constraint 3: Calendar Properties
# The date must fall on a specific day of the week.
# Python's weekday(): Monday=0, ..., Saturday=5, Sunday=6.
if dt.weekday() != 5:
return False
# The date must fall within a specific ISO week number.
if dt.isocalendar()[1] != 48:
return False
# Constraint 4: Numeric Checksum
# Treat the date string as a number (ignoring hyphens) and check a modular property.
# This helps isolate the correct date from potential arithmetic collisions.
val = int(x.replace('-', ''))
if val % 99999 != 51331:
return False
return True
except ValueError:
return False