← All Duels

gemini-2.5-pro_vs_claude-sonnet-4-5-20250929_20260124_081157.jsonl — 10 puzzles

gemini-2.5-pro
-5
vs
claude-sonnet-4-5-20250929
-2
#1 Sample Solution Wrong
import base64
import math

def mystery(x):
    """
    Find a value for x that makes this function return True.
    x can be a string or a number.
    """
    # The length check is the first major clue.
    if not isinstance(x, str) or len(x) != 8:
        return False
    
    try:
        # A simple key derived from a property of the input.
        key = len(x) * 10101
        
        # The input must survive a chain of decoding steps.
        decoded_hex = bytes.fromhex(x)
        decoded_b64 = base64.b64decode(decoded_hex, validate=True)
        
        # The decoded value is then transformed with the key.
        num_from_bytes = int.from_bytes(decoded_b64, 'big')
        final_num = num_from_bytes ^ key

        # The resulting number must satisfy several mathematical properties.
        if final_num < 4:
            return False
            
        # Property 1: It must be a perfect square.
        sqrt = final_num ** 0.5
        if sqrt != int(sqrt):
            return False
            
        sqrt_int = int(sqrt)
        
        # Property 2: Its integer square root must be a palindrome.
        if str(sqrt_int) != str(sqrt_int)[::-1]:
            return False

        # Property 3: Its integer square root must also be a prime number.
        if sqrt_int < 2: return False
        for i in range(2, int(math.sqrt(sqrt_int)) + 1):
            if sqrt_int % i == 0:
                return False
        
        return True
        
    except (ValueError, TypeError):
        # Incorrectly formatted inputs will fail here.
        return False
'41535044'
Proposer: gemini-2.5-pro Solver: claude-sonnet-4-5-20250929
-1 vs 0
#2 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    
    # Must be exactly 5 digits
    if not (10000 <= x <= 99999):
        return False
    
    s = str(x)
    d = [int(c) for c in s]
    
    # Position 0: must be prime digit (2, 3, 5, 7)
    if d[0] not in [2, 3, 5, 7]:
        return False
    
    # Position 1: must be a perfect square digit (0, 1, 4, 9)
    if d[1] not in [0, 1, 4, 9]:
        return False
    
    # Position 2: must be even
    if d[2] % 2 != 0:
        return False
    
    # Position 3: must be odd
    if d[3] % 2 != 1:
        return False
    
    # Position 4: must equal the sum of positions 0 and 1, modulo 10
    if d[4] != (d[0] + d[1]) % 10:
        return False
    
    # Additional constraint: product of all digits must be divisible by 12
    prod = 1
    for digit in d:
        prod *= digit
    if prod % 12 != 0:
        return False
    
    return True
20412
34257
Proposer: claude-sonnet-4-5-20250929 Solver: gemini-2.5-pro
-1 vs 0
#3 Sample Solution Wrong
def mystery(x):
    """
    Find a value for x that makes this function return True.
    x can be a string or a number.
    """
    if not isinstance(x, str):
        return False

    # The input's structure and content are constrained.
    path_len = 36
    if len(x) != path_len:
        return False
        
    moves = {'U': (0, 1), 'D': (0, -1), 'L': (-1, 0), 'R': (1, 0)}
    if any(c not in moves for c in x):
        return False

    # We trace a path based on the sequence of moves in x.
    pos = (0, 0)
    path_coords = [pos]
    visited = {pos}

    for i, move in enumerate(x):
        try:
            delta = moves[move]
            pos = (pos[0] + delta[0], pos[1] + delta[1])
            path_coords.append(pos)
            
            # The path has rules about where it can go.
            if i < path_len - 1:
                if pos in visited:
                    return False
                visited.add(pos)
        except (TypeError, KeyError):
            return False

    # The final state of the path is checked against several conditions.
    # Condition 1: Endpoint.
    if pos != (0, 0):
        return False

    # Condition 2: A geometric property of the entire path.
    area = 0
    for i in range(path_len):
        p1 = path_coords[i]
        p2 = path_coords[i+1]
        area += (p1[0] * p2[1]) - (p2[0] * p1[1])
    
    if abs(area) / 2.0 != 41:
        return False

    # Condition 3: Another geometric property.
    all_x = [p[0] for p in path_coords]
    all_y = [p[1] for p in path_coords]
    width = max(all_x) - min(all_x)
    height = max(all_y) - min(all_y)

    if height <= width:
        return False
        
    return True
'RRRRUUUUULDRURULUUUULLLLDDDDDDDDDRULD'
Proposer: gemini-2.5-pro Solver: claude-sonnet-4-5-20250929
-2 vs 0
#4 Sample Solution Wrong
def mystery(x):
    if not isinstance(x, int):
        return False
    
    if x <= 0:
        return False
    
    # Convert to binary string
    binary = bin(x)[2:]
    
    # Must have exactly 16 bits
    if len(binary) != 16:
        return False
    
    # Count 1s and 0s
    ones = binary.count('1')
    zeros = binary.count('0')
    
    # Must have exactly 8 of each
    if ones != 8 or zeros != 8:
        return False
    
    # The number must be palindromic in binary
    if binary != binary[::-1]:
        return False
    
    # Additional constraint: the decimal number must be divisible by 7
    if x % 7 != 0:
        return False
    
    return True
51555
Proposer: claude-sonnet-4-5-20250929 Solver: gemini-2.5-pro
-2 vs -1
#5 Sample Solution Wrong
import math

def mystery(x):
    """
    Find a value for x that makes this function return True.
    x can be a string or a number.
    """
    if not isinstance(x, int) or not (10**8 <= x < 10**9):
        return False

    # A sequence is generated using a linear congruential generator.
    m = 2**31 - 1 
    a = 48271     
    c = 0         

    seq = []
    current_val = x
    
    # The sequence has a fixed length.
    for _ in range(50):
        seq.append(current_val)
        current_val = (a * current_val + c) % m
        
        # A forbidden value that invalidates the sequence.
        if current_val == 0:
            return False

    # Condition 1: The final value in the sequence must be in a narrow range.
    if not (1337000000 <= seq[-1] < 1337001000):
        return False
        
    # Condition 2: A property of the entire sequence.
    total_sum = sum(seq)
    if total_sum < 2: 
        return False
    # This property is computationally intensive to check.
    for i in range(2, int(math.sqrt(total_sum)) + 1):
        if total_sum % i == 0:
            return False
            
    # Condition 3: Another property based on the decimal representation of the numbers.
    palindrome_count = 0
    for val in seq:
        if str(val) == str(val)[::-1]:
            palindrome_count += 1
    
    if palindrome_count < 5:
        return False

    return True
159902681
Proposer: gemini-2.5-pro Solver: claude-sonnet-4-5-20250929
-3 vs -1
#6 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    
    # Must be a 6-digit number
    if not (100000 <= x <= 999999):
        return False
    
    s = str(x)
    digits = [int(c) for c in s]
    
    # First three digits must form a number that's a perfect square
    first_three = int(s[:3])
    sqrt1 = int(first_three ** 0.5)
    if sqrt1 * sqrt1 != first_three:
        return False
    
    # Last three digits must form a number that's a perfect cube
    last_three = int(s[3:])
    # Check if it's a perfect cube
    cube_root = round(last_three ** (1/3))
    if cube_root ** 3 != last_three:
        return False
    
    # Sum of all digits must be 27
    if sum(digits) != 27:
        return False
    
    # The number must be divisible by 13
    if x % 13 != 0:
        return False
    
    return True
144729
144729
Proposer: claude-sonnet-4-5-20250929 Solver: gemini-2.5-pro
-3 vs -1
#7 Sample Solution Wrong
import hashlib
import math

def mystery(x):
    """
    Find a value for x that makes this function return True.
    x can be a string or a number.
    """
    # Constraint 1: Input type and structure.
    if not isinstance(x, str) or len(x) != 16:
        return False
    
    # Constraint 2: Character set and composition.
    # The input must be a specific mix of lowercase letters and digits.
    if not x.isalnum() or not x.islower():
        # A quick check to filter out uppercase or other symbols.
        # The detailed check is next.
        if any(c.isupper() for c in x):
            return False

    digits = sum(c.isdigit() for c in x)
    letters = sum(c.isalpha() for c in x)
    
    if digits != 3 or letters != 13:
        return False
        
    try:
        # Transformation: The input is mapped to a large integer via a cryptographic hash.
        # This makes reverse-engineering the input from the target number computationally infeasible.
        digest = hashlib.sha256(x.encode('utf-8')).digest()
        n = int.from_bytes(digest, 'big')

        # The core of the puzzle lies in the number-theoretic properties of this integer.
        # A small factor must be found. The limit is part of the puzzle's design.
        limit = 2**20 # Approx 1 million
        p = -1
        
        # A simple trial division loop to find the smallest factor.
        if n % 2 == 0:
            p = 2
        else:
            for i in range(3, limit, 2):
                if n % i == 0:
                    p = i
                    break
        
        if p == -1:
            return False # The hash number has no small factors.

        # The two resulting factors, p and q, must satisfy multiple conditions.
        q = n // p
        
        # Condition A: The larger factor 'q' must itself be prime.
        # This requires a primality test. The one provided here is deliberately slow
        # for large numbers, adding a hidden challenge.
        def is_prime_check(num):
            if num < 2: return False
            if num % 2 == 0: return num == 2
            d = 3
            while d * d <= num:
                if num % d == 0:
                    return False
                d += 2
            return True

        if not is_prime_check(q):
            return False
            
        # Condition B: A non-obvious link between the string representations of the factors.
        if str(p) not in str(q):
            return False

        return True
        
    except Exception:
        return False
'vjl4wz0ahmp3qxrb'
Proposer: gemini-2.5-pro Solver: claude-sonnet-4-5-20250929
-4 vs -1
#8 Solved
def mystery(x):
    if not isinstance(x, str):
        return False
    
    # Must be exactly 9 characters
    if len(x) != 9:
        return False
    
    # Must be 3 lowercase letters followed by 6 digits
    if not (x[:3].isalpha() and x[:3].islower() and x[3:].isdigit()):
        return False
    
    letters = x[:3]
    digits = x[3:]
    
    # The letters must be in alphabetical order
    if letters != ''.join(sorted(letters)):
        return False
    
    # The three letter values (a=1, b=2, ..., z=26) must sum to a prime number
    letter_sum = sum(ord(c) - ord('a') + 1 for c in letters)
    
    def is_prime(n):
        if n < 2:
            return False
        if n == 2:
            return True
        if n % 2 == 0:
            return False
        for i in range(3, int(n**0.5) + 1, 2):
            if n % i == 0:
                return False
        return True
    
    if not is_prime(letter_sum):
        return False
    
    # The 6-digit number must be a perfect square
    num = int(digits)
    sqrt = int(num ** 0.5)
    if sqrt * sqrt != num:
        return False
    
    # The sum of the 6 digits must equal the letter sum
    digit_sum = sum(int(d) for d in digits)
    if digit_sum != letter_sum:
        return False
    
    return True
"abd160000"
"bef490000"
Proposer: claude-sonnet-4-5-20250929 Solver: gemini-2.5-pro
-4 vs -1
#9 Sample Solution Wrong
import math

def mystery(x):
    """
    Find a value for x that makes this function return True.
    x can be a string or a number.
    """

    # Helper function for primality testing.
    def is_prime(n):
        if n < 2: return False
        if n == 2: return True
        if n % 2 == 0: return False
        d = 3
        while d * d <= n:
            if n % d == 0:
                return False
            d += 2
        return True

    # Constraint 1: Input type and structure (UUID-like).
    if not isinstance(x, str) or len(x) != 36:
        return False
    parts = x.split('-')
    if len(parts) != 4:
        return False
    p1, p2, p3, p4 = parts
    if not (len(p1) == 8 and len(p2) == 4 and len(p3) == 4 and len(p4) == 12):
        return False

    try:
        # Constraint 2: All parts must be valid hexadecimal numbers.
        n1 = int(p1, 16)
        n2 = int(p2, 16)
        n3 = int(p3, 16)
        n4 = int(p4, 16)
    except ValueError:
        return False

    # Constraint 3: Properties of the first part.
    # It must be a large prime number.
    if not is_prime(n1):
        return False

    # Constraint 4: Properties of the second part.
    # It must be a power of 2. `(n & (n-1) == 0)` is a classic check for this.
    if n2 == 0 or (n2 & (n2 - 1) != 0):
        return False

    # Constraint 5: Properties of the third part.
    # Its decimal representation must be a palindrome.
    if str(n3) != str(n3)[::-1]:
        return False
        
    # Final Constraint: A global property linking all parts.
    # The full 32-digit hex number (128 bits) must be divisible by a large prime.
    # This makes it very difficult to find a solution by guessing or simple iteration.
    full_hex_string = "".join(parts)
    big_num = int(full_hex_string, 16)
    
    # The modulus is a large prime, chosen to be non-obvious.
    modulus = 999999937
    
    if big_num % modulus != 0:
        return False

    return True
"ee6b2807-1000-04c5-5af3178c593c"`
Proposer: gemini-2.5-pro Solver: claude-sonnet-4-5-20250929
-5 vs -1
#10 Sample Solution Wrong
def mystery(x):
    if not isinstance(x, int):
        return False
    
    # Must be a 4-digit number
    if not (1000 <= x <= 9999):
        return False
    
    s = str(x)
    d = [int(c) for c in s]
    
    # Must be a palindrome
    if s != s[::-1]:
        return False
    
    # First digit must be prime
    if d[0] not in [2, 3, 5, 7]:
        return False
    
    # Sum of all digits must be 20
    if sum(d) != 20:
        return False
    
    # Must be divisible by 11
    if x % 11 != 0:
        return False
    
    # Product of first two digits must be greater than product of last two
    if d[0] * d[1] <= d[2] * d[3]:
        return False
    
    return True
7337
Proposer: claude-sonnet-4-5-20250929 Solver: gemini-2.5-pro
-5 vs -2