import hashlib
import base64
def mystery(x):
"""
This function takes a value x, subjects it to a series of transformations,
and returns True only if the final result matches a secret value.
"""
# The input must be an integer to proceed.
if not isinstance(x, int):
return False
# Transformation 1: Convert the integer to its hexadecimal string representation.
# For example, 212652 becomes '0x33ea4'.
s1 = hex(x)
# Transformation 2: Take the hex string, remove the '0x' prefix, and reverse it.
# For example, '33ea4' becomes '4ae33'.
s2 = s1[2:][::-1]
# Transformation 3: Encode the reversed string into bytes and then apply Base64 encoding.
# For example, '4ae33' becomes b'NGFlMzM='.
s3 = base64.b64encode(s2.encode('ascii'))
# Transformation 4: Compute the SHA-1 hash of the Base64 encoded bytes.
# The result is a hex digest string.
h = hashlib.sha1(s3).hexdigest()
# The final check: does the computed hash match the secret target hash?
# It is computationally infeasible to reverse this step.
return h == '67ae1a64661ac8b4494666f58c4822408dd0a3e4'
def mystery(x):
if not isinstance(x, int) or x <= 1:
return False
def prime_factors(n):
factors = []
d = 2
while d * d <= n:
while n % d == 0:
if d not in factors:
factors.append(d)
n //= d
d += 1
if n > 1 and n not in factors:
factors.append(n)
return factors
pf = prime_factors(x)
if len(pf) != 3:
return False
if sum(pf) != 100:
return False
p, q, r = sorted(pf)
if x != p * q * r:
return False
if r <= 60:
return False
if p != 2:
return False
if q < 30:
return False
if sum(int(d) for d in str(q)) != 4:
return False
return True
import cmath
def mystery(x):
"""
This function takes a value 'x', interprets it as coordinates
in a 2D plane, and simulates a process. It returns True only if
the process terminates in a very specific state at a specific time.
"""
# --- Input Validation and Parsing ---
# The input must be a string representing two comma-separated numbers.
if not isinstance(x, str):
return False
parts = x.split(',')
if len(parts) != 2:
return False
try:
# These parts define a point 'c' in the complex plane.
c = complex(float(parts[0]), float(parts[1]))
except (ValueError, TypeError):
return False
# --- The Core Simulation ---
# We start a process at the origin (z = 0) and repeatedly apply a
# transformation involving the input point 'c'.
z = complex(0, 0)
max_steps = 100
for i in range(1, max_steps + 1):
z = z*z + c
# The process can become unstable and "escape". We check for this.
if abs(z) > 2:
# First constraint: The escape must happen at a precise moment.
# Not sooner, not later.
if i != 88:
return False
# Second constraint: The state of the system ('z') at the moment
# of escape must have a very specific property, checked to a
# high degree of precision. This makes finding the solution by
# chance extremely unlikely.
target_value = 1.304881023
tolerance = 1e-9
if abs(z.real - target_value) < tolerance:
return True
else:
return False
# If the process remains stable and never escapes, it's not the solution.
return False
def mystery(x):
def is_prime(n):
if n < 2:
return False
if n == 2:
return True
if n % 2 == 0:
return False
for i in range(3, int(n**0.5) + 1, 2):
if n % i == 0:
return False
return True
def is_perfect_square(n):
r = int(n ** 0.5)
return r * r == n
if not isinstance(x, int) or x <= 0:
return False
s = str(x)
if len(s) != 9:
return False
if sorted(s) != ['1', '2', '3', '4', '5', '6', '7', '8', '9']:
return False
if not is_prime(int(s[0:2])):
return False
if not is_prime(int(s[7:9])):
return False
if not is_perfect_square(int(s[2] + s[4] + s[6])):
return False
odd_sum = sum(int(s[i]) for i in range(1, 9, 2))
even_sum = sum(int(s[i]) for i in range(0, 9, 2))
if odd_sum != even_sum + 3:
return False
if s[4] != '7':
return False
return True
import hashlib
def mystery(x):
"""
This function takes a string x, uses it to generate a deterministic
random walk, and returns True only if the walk's path has a set of
very specific, rare properties.
"""
# --- Input Validation ---
# The input must be a string to serve as a seed.
if not isinstance(x, str):
return False
# --- Seeding the Process ---
# The input string is hashed to produce a starting seed for a
# pseudo-random number generator (PRNG). This ensures that the same
# input will always produce the same path, but even a tiny change
# to the input will produce a completely different path.
h = hashlib.sha256(x.encode('utf-8')).digest()
seed = int.from_bytes(h[:8], 'big')
# --- The Walker Simulation ---
# The PRNG is a simple Linear Congruential Generator (LCG).
# Its state is updated in a deterministic sequence based on the seed.
# Parameters are from C++11's minstd_rand.
a = 48271
m = 2**31 - 1
state = seed % m
# The walker starts at (0,0) on a 16x16 grid and takes 256 steps.
pos = [0, 0]
path = [(0, 0)]
visited = {(0, 0)}
for _ in range(256):
# Generate the next pseudo-random number.
state = (a * state) % m
# Use the two least significant bits to determine the direction.
direction = state & 3
if direction == 0: # North
pos[1] += 1
elif direction == 1: # East
pos[0] += 1
elif direction == 2: # South
pos[1] -= 1
else: # West
pos[0] -= 1
# Constraint 1: The walker must stay within the 16x16 grid.
# If it ever steps out of bounds, the path is invalid.
if not (0 <= pos[0] < 16 and 0 <= pos[1] < 16):
return False
path.append(tuple(pos))
visited.add(tuple(pos))
# --- Final Property Checks ---
# After the walk is complete, the generated path must satisfy three
# highly specific and independent constraints.
# Constraint 2: The walker's final position must be exactly (1, 7).
if tuple(pos) != (1, 7):
return False
# Constraint 3: The number of unique grid squares visited during the
# entire walk must be exactly 111.
if len(visited) != 111:
return False
# Constraint 4: A complex checksum, calculated from the coordinates of
# every single step in the path, must match a secret target value.
# This ensures the entire path shape is correct, not just its endpoints.
checksum = 0
for i, (px, py) in enumerate(path):
# The formula is arbitrary but sensitive to the path's structure.
checksum += (px * (i + 1)) - (py * (i + 1)**2)
if checksum != -11823774:
return False
# Only a seed that produces a path satisfying all constraints is a solution.
return True
def mystery(x):
if not isinstance(x, str):
return False
if len(x) != 16:
return False
if not all(c in '0123456789abcdef' for c in x):
return False
grid = [[int(x[i*4 + j], 16) for j in range(4)] for i in range(4)]
# Magic square: rows, columns, diagonals all sum to 30
for row in grid:
if sum(row) != 30:
return False
for j in range(4):
if sum(grid[i][j] for i in range(4)) != 30:
return False
if sum(grid[i][i] for i in range(4)) != 30:
return False
if sum(grid[i][3-i] for i in range(4)) != 30:
return False
# Must be a permutation of 0-15
values = [grid[i][j] for i in range(4) for j in range(4)]
if sorted(values) != list(range(16)):
return False
# Specific corner values
if grid[0][0] != 0 or grid[3][3] != 15:
return False
# Both diagonals form arithmetic sequences when sorted
main_diag = sorted([grid[i][i] for i in range(4)])
if main_diag[1] - main_diag[0] != main_diag[2] - main_diag[1]:
return False
if main_diag[2] - main_diag[1] != main_diag[3] - main_diag[2]:
return False
anti_diag = sorted([grid[i][3-i] for i in range(4)])
if anti_diag[1] - anti_diag[0] != anti_diag[2] - anti_diag[1]:
return False
if anti_diag[2] - anti_diag[1] != anti_diag[3] - anti_diag[2]:
return False
return True
def mystery(x):
"""
This function takes a binary string 'x', uses it as the initial
state for a 1D cellular automaton (Rule 110), and simulates its
evolution. It returns True only if the state after 128 generations
exhibits a specific, rare combination of properties.
"""
# --- Input Validation ---
if not isinstance(x, str) or len(x) != 64:
return False
if not all(c in '01' for c in x):
return False
# --- Cellular Automaton Simulation ---
# The rule is Rule 110, a known chaotic and Turing-complete rule.
# The keys represent the 3-cell neighborhood (left, center, right).
rules = {
(1, 1, 1): 0, (1, 1, 0): 1, (1, 0, 1): 1, (1, 0, 0): 0,
(0, 1, 1): 1, (0, 1, 0): 1, (0, 0, 1): 1, (0, 0, 0): 0,
}
# Convert the input string to a list of integers.
current_gen = [int(c) for c in x]
width = len(current_gen)
num_generations = 128
for _ in range(num_generations):
next_gen = [0] * width
for i in range(width):
# Get neighborhood with wrap-around boundaries.
left = current_gen[i - 1]
center = current_gen[i]
right = current_gen[(i + 1) % width]
neighborhood = (left, center, right)
next_gen[i] = rules[neighborhood]
current_gen = next_gen
# The final state of the automaton after all generations.
final_gen_str = "".join(map(str, current_gen))
# --- Final Property Checks ---
# The final generation must satisfy three specific and independent constraints.
# Finding an initial state 'x' that leads to this exact outcome is
# computationally infeasible without knowing the original 'x'.
# Constraint 1: The population count (number of '1's) must be exactly 23.
if final_gen_str.count('1') != 23:
return False
# Constraint 2: The final string must contain the specific substring '100001'.
# This is a rare pattern that constrains the local structure.
if '100001' not in final_gen_str:
return False
# Constraint 3: A weighted checksum of the final state must match a target value.
# This ensures the global structure of the entire string is correct.
checksum = sum(i * int(c) for i, c in enumerate(final_gen_str))
if checksum != 815:
return False
return True
def mystery(x):
if not isinstance(x, int) or x < 100000 or x >= 1000000:
return False
s = str(x)
digits = [int(d) for d in s]
def is_prime(n):
if n < 2:
return False
for i in range(2, int(n**0.5) + 1):
if n % i == 0:
return False
return True
if len(set(s)) != 6:
return False
if sum(digits) != 25:
return False
if int(s[:3]) % 7 != 0:
return False
if int(s[3:]) % 11 != 0:
return False
if not is_prime(int(s[2:4])):
return False
if x % 2 == 0:
return False
return True
import hashlib
def mystery(x):
"""
This function takes a string 'x' which it treats as a key. It uses this
key to decrypt a block of data. It returns True only if the decrypted
data has a very specific, complex internal structure.
"""
# --- Input Validation ---
# The key must be a non-empty string.
if not isinstance(x, str) or not x:
return False
# --- The Encrypted Data Block ---
# This is the "treasure map" that must be decrypted. In its current
# form, it is indistinguishable from random noise.
encrypted_map = b'\x02\x1a\x10\xc1s\xe0\x1f\xe3\x91f\xe7G\x86\xf5R\xac\xc3\xb5\x85\xe8\xe2\xd4\xdc\xe8\xc4\xa1\x9d\xe6\xcfF\xd9\x1e\xf5!\xc9\x06\x1a\x96\xb3\x8f\x03\xe8\xc9\x90\xe1\xd2\x15\xe3\x85a\xec\xbc\xd1\x8c\xfc;\xe7\x89\x1f\xee*\x9b\xe9*\xc8\x10\xe6\x17\xd2/\x96\xba\x81\x0e\xc5\x9f\xea\xd2\x05\xea\x8e`\xee\xb3'
# --- Key Derivation and Decryption ---
# The input string 'x' is hashed to create a 256-bit (32-byte) key.
# This is a one-way process; you cannot get 'x' back from the key.
key = hashlib.sha256(x.encode('utf-8')).digest()
# A simple XOR cipher is used to decrypt the map. A different key
# will produce completely different, seemingly random, output.
try:
decrypted_bytes = bytearray()
for i in range(len(encrypted_map)):
decrypted_bytes.append(encrypted_map[i] ^ key[i % len(key)])
# The plaintext is expected to be ASCII text.
decrypted_map_str = decrypted_bytes.decode('ascii')
except UnicodeDecodeError:
# If the key is wrong, the output is likely not valid ASCII.
return False
# --- Structural Validation of the Decrypted Data ---
# The decrypted data is only considered valid if it represents a
# solved 9x9 Sudoku puzzle. This requires satisfying multiple
# stringent constraints simultaneously.
# Constraint 1: Must be exactly 81 characters, all of which are digits.
if len(decrypted_map_str) != 81 or not decrypted_map_str.isdigit():
return False
try:
grid = [[int(decrypted_map_str[r*9 + c]) for c in range(9)] for r in range(9)]
# A solved Sudoku contains only digits 1-9.
if any(0 in row for row in grid):
return False
except (ValueError, IndexError):
return False
# Constraint 2: Each row and each column must contain the digits 1-9 exactly once.
for i in range(9):
if len({grid[i][j] for j in range(9)}) != 9: # Check row i
return False
if len({grid[j][i] for j in range(9)}) != 9: # Check column i
return False
# Constraint 3: Each of the nine 3x3 subgrids must contain the digits 1-9 exactly once.
for box_r in range(0, 9, 3):
for box_c in range(0, 9, 3):
box_vals = {grid[r][c] for r in range(box_r, box_r + 3) for c in range(box_c, box_c + 3)}
if len(box_vals) != 9:
return False
# If the decrypted data successfully passes all structural checks, the key 'x' must be correct.
return True
def mystery(x):
if not isinstance(x, str) or len(x) != 12:
return False
if not x.islower() or not x.isalpha():
return False
if x != x[::-1]:
return False
if len(set(x)) != 6:
return False
letter_sum = sum(ord(c) - ord('a') + 1 for c in x)
if letter_sum != 100:
return False
if x[0] != 'a':
return False
if x[1] <= x[0]:
return False
if x[2] <= x[1]:
return False
letter_product = 1
for c in set(x):
letter_product *= (ord(c) - ord('a') + 1)
if letter_product % 77 != 0:
return False
return True