import math
def mystery(x):
# Condition 1: Input must be a string
if not isinstance(x, str):
return False
# Condition 2: The string must have a specific length
if len(x) != 8:
return False
# Condition 3: All characters must be either a lowercase letter or a digit
if not all(char.islower() or char.isdigit() for char in x):
return False
# Initialize variables to track digits, letter ASCII sum, and digit positions
digits = []
letters_ascii_sum = 0
first_digit_index = -1
last_digit_index = -1
# Iterate through the string to populate the variables
for i, char in enumerate(x):
if char.isdigit():
digits.append(int(char))
if first_digit_index == -1:
first_digit_index = i
last_digit_index = i
elif char.islower():
letters_ascii_sum += ord(char)
# Other character types are implicitly excluded by Condition 3
# Condition 4: There must be exactly 3 digits in the string
if len(digits) != 3:
return False
# Helper function to check for primality
def is_prime(n):
if n < 2:
return False
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return False
return True
# Condition 5: The product of the three digits must be a prime number
product_of_digits = math.prod(digits)
if not is_prime(product_of_digits):
return False
# Condition 6: The sum of the ASCII values of the lowercase letters must be a specific number
# (Given 8 total characters and 3 digits, there must be 5 lowercase letters)
if letters_ascii_sum != 555:
return False
# Condition 7: The first digit encountered must be at an even index
if first_digit_index % 2 != 0:
return False
# Condition 8: The last digit encountered must be at an odd index
if last_digit_index % 2 != 1:
return False
return True
import math
def is_prime(n):
if n < 2:
return False
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return False
return True
def mystery(x):
# Condition 1: Input must be a string
if not isinstance(x, str):
return False
# Condition 2: The string must have a specific length
if len(x) != 10:
return False
# Condition 3: All characters must be either a lowercase letter or a digit
if not all(c.islower() or c.isdigit() for c in x):
return False
# Condition 4: There must be exactly 4 digits and 6 lowercase letters
digits = [int(c) for c in x if c.isdigit()]
if len(digits) != 4:
return False
letters = [c for c in x if c.islower()]
if len(letters) != 6:
return False
# Condition 5: The sum of the ASCII values of the lowercase letters must be exactly 650
ascii_sum = sum(ord(c) for c in letters)
if ascii_sum != 650:
return False
# Condition 6: The product of the digits must be a perfect cube
prod = math.prod(digits)
cube_root = round(prod ** (1/3))
if cube_root ** 3 != prod:
return False
# Condition 7: The sum of the digits must be a prime number
dig_sum = sum(digits)
if not is_prime(dig_sum):
return False
# Condition 8: The positions of the digits must form an arithmetic progression with common difference 2
dig_pos = [i for i, c in enumerate(x) if c.isdigit()]
if len(dig_pos) != 4:
return False
diffs = [dig_pos[i+1] - dig_pos[i] for i in range(3)]
if not all(d == 2 for d in diffs):
return False
# Condition 9: The first and last characters must be the same lowercase letter
if not (x[0].islower() and x[-1].islower() and x[0] == x[-1]):
return False
# Condition 10: The sequence of lowercase letters (in the order they appear) must form a palindrome
letters_str = ''.join(letters)
if letters_str != letters_str[::-1]:
return False
# Condition 11: The number formed by concatenating the digits (in the order they appear) must be a prime number
digits_str = ''.join(c for c in x if c.isdigit())
if not is_prime(int(digits_str)):
return False
return True
import math
def is_prime(n):
if n < 2:
return False
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return False
return True
# Helper function to check if a number is a Fibonacci number relevant to the puzzle's constraints
def is_fibonacci(n):
# For sums of 6 digits (0-9), max sum is 54.
# Relevant Fibonacci numbers (excluding 0, 1, 2 which are too small for sum of 6 non-zero digits,
# and product_digits > 1 implies no digit can be 0):
# 3 (sum of 6 digits 1,1,1,0,0,0 - impossible due to product > 1)
# 5 (sum of 6 digits 1,1,1,1,1,0 - impossible due to product > 1)
# The smallest sum of 6 digits (1-9) is 6 (1,1,1,1,1,1).
# So relevant Fibonacci numbers for sum_digits are 8, 13, 21, 34.
return n in {8, 13, 21, 34}
def mystery(x):
# Condition 1: Input must be a string
if not isinstance(x, str):
return False
# Condition 2: The string must have a specific length
if len(x) != 12:
return False
# Condition 3: All characters must be either a lowercase letter or a digit
if not all(c.islower() or c.isdigit() for c in x):
return False
# Condition 4 & 5: Positional Alternation - L D L D L D L D L D L D
# This implies exactly 6 letters (at even indices) and 6 digits (at odd indices)
letters = []
digits = []
for i, char in enumerate(x):
if i % 2 == 0: # Even index (0, 2, 4, 6, 8, 10), must be a letter
if not char.islower():
return False
letters.append(char)
else: # Odd index (1, 3, 5, 7, 9, 11), must be a digit
if not char.isdigit():
return False
digits.append(int(char))
# This check is technically redundant if Condition 2 and the loop logic are correct,
# but it ensures the counts are exactly 6 of each type.
if len(letters) != 6 or len(digits) != 6:
return False
# Condition 6a: Sum of the 6 digits must be a Fibonacci number
sum_digits = sum(digits)
if not is_fibonacci(sum_digits):
return False
# Condition 6b: Product of the 6 digits must be a perfect square greater than 1
product_digits = math.prod(digits)
if product_digits <= 1: # Must be greater than 1
return False
sqrt_prod = round(product_digits ** 0.5)
if sqrt_prod * sqrt_prod != product_digits:
return False
# Condition 6c: The number formed by concatenating the first three digits (D0D1D2)
# must be a prime number, AND the number formed by concatenating the last three digits (D3D4D5)
# must also be a prime number.
num1_str = "".join(str(d) for d in digits[:3])
num2_str = "".join(str(d) for d in digits[3:])
# Since product_digits > 1, no digit can be 0, so int(num_str) will not have leading zeros.
if not (is_prime(int(num1_str)) and is_prime(int(num2_str))):
return False
# Condition 7a: Sum of the ASCII values of the 6 letters must be a prime number
sum_ascii_letters = sum(ord(c) for c in letters)
if not is_prime(sum_ascii_letters):
return False
# Condition 7b: All 6 letters must be unique
if len(set(letters)) != 6:
return False
# Condition 7c: The set of letters must contain exactly two vowels ('a', 'e', 'i', 'o', 'u')
vowels = {'a', 'e', 'i', 'o', 'u'}
found_vowels = sum(1 for letter in letters if letter in vowels)
if found_vowels != 2:
return False
# Condition 8: (Cross-type positional relationship)
# The sum of ASCII of the first letter (x[0]) and the value of the first digit (x[1])
# must equal the sum of ASCII of the last letter (x[10]) and the value of the last digit (x[11]), plus 10.
if (ord(x[0]) + int(x[1])) != (ord(x[10]) + int(x[11]) + 10):
return False
return True
import math
def is_prime(n):
if n < 2:
return False
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return False
return True
def mystery(x):
if not isinstance(x, str):
return False
if len(x) != 11:
return False
if not all(c.islower() if i % 2 == 0 else c.isdigit() for i, c in enumerate(x)):
return False
digit_positions = [1, 3, 5, 7, 9]
digits = [int(x[i]) for i in digit_positions]
product = math.prod(digits)
if not is_prime(product):
return False
sum_digits = sum(digits)
if not is_prime(sum_digits):
return False
non_one = [i for i in digit_positions if int(x[i]) != 1]
if len(non_one) != 1:
return False
pos = non_one[0]
d = int(x[pos])
if pos != d:
return False
for i in digit_positions:
prev_letter = x[i - 1]
if ord(prev_letter) % 10 != int(x[i]):
return False
digits_str = ''.join(x[i] for i in digit_positions)
if not is_prime(int(digits_str)):
return False
letter_positions = [0, 2, 4, 6, 8, 10]
letters = [x[i] for i in letter_positions]
vowels = set('aeiou')
vowel_count = sum(1 for c in letters if c in vowels)
if vowel_count != 2:
return False
ascii_sum = sum(ord(c) for c in letters)
if not is_prime(ascii_sum):
return False
return True
import math
def is_prime(n):
if n < 2:
return False
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return False
return True
def mystery(x):
# P1: Type and Length: Input must be a string of length 10.
if not isinstance(x, str):
return False
if len(x) != 10:
return False
# P2: Character types and positions:
# Even positions (0, 2, 4, 6, 8) must be lowercase letters.
# Odd positions (1, 3, 5, 7, 9) must be digits.
# All characters must be either a lowercase letter or a digit.
letters = []
digits = []
for i, char in enumerate(x):
if i % 2 == 0: # Even position: must be a lowercase letter
if not char.islower():
return False
letters.append(char)
else: # Odd position: must be a digit
if not char.isdigit():
return False
digits.append(int(char))
# This implicitly ensures there are exactly 5 letters and 5 digits
# given the length check and loop structure.
# P3: Digit Conditions (digits = [d0, d1, d2, d3, d4] from x[1], x[3], x[5], x[7], x[9])
# D1: All 5 digits must be unique and non-zero.
if len(set(digits)) != 5 or 0 in digits:
return False
# D2: The sum of all 5 digits must be a prime number.
sum_all_digits = sum(digits)
if not is_prime(sum_all_digits):
return False
# D3: The sum of the first three digits (d0 + d1 + d2) must be a perfect square.
sum_first_three_digits = digits[0] + digits[1] + digits[2]
sqrt_sum = round(sum_first_three_digits ** 0.5)
if sqrt_sum * sqrt_sum != sum_first_three_digits:
return False
# D4: The number formed by concatenating the last two digits (d3d4) must be a prime number.
# e.g., if digits[3]=4, digits[4]=3, then the number is 43.
concat_last_two_digits = int(str(digits[3]) + str(digits[4]))
if not is_prime(concat_last_two_digits):
return False
# P4: Letter Conditions (letters = [l0, l1, l2, l3, l4] from x[0], x[2], x[4], x[6], x[8])
# L1: All 5 letters must be unique consonants.
vowels = {'a', 'e', 'i', 'o', 'u'}
if not all(c.islower() and c not in vowels for c in letters): # Check if all are consonants
return False
if len(set(letters)) != 5: # Check if all are unique
return False
# L2: The sum of the ASCII values of the 5 letters must be a perfect square.
sum_ascii_letters = sum(ord(c) for c in letters)
sqrt_ascii_sum = round(sum_ascii_letters ** 0.5)
if sqrt_ascii_sum * sqrt_ascii_sum != sum_ascii_letters:
return False
# L3: The first letter (l0 = x[0]) and the last letter (l4 = x[8]) must be consecutive in the alphabet.
# This means ord(l0) + 1 == ord(l4) OR ord(l4) + 1 == ord(l0).
if not (abs(ord(letters[0]) - ord(letters[4])) == 1):
return False
# P5: Cross-type Conditions
# C1: The ASCII value of the first letter (x[0]) modulo 5 must be equal to the first digit (x[1]).
if (ord(letters[0]) % 5) != digits[0]:
return False
# C2: The ASCII value of the last letter (x[8]) modulo 5 must be equal to the last digit (x[9]).
if (ord(letters[4]) % 5) != digits[4]:
return False
return True
import math
def is_prime(n):
if n < 2:
return False
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return False
return True
def mystery(x):
if not isinstance(x, str):
return False
if len(x) != 14:
return False
for i, c in enumerate(x):
if i % 2 == 0:
if not c.islower():
return False
else:
if not c.isdigit():
return False
digit_pos = list(range(1, 14, 2))
digits = [int(x[i]) for i in digit_pos]
nonzero_pos = [pos for pos in digit_pos if int(x[pos]) != 0]
if len(nonzero_pos) != 3:
return False
prime_pos = [3, 5, 7, 11, 13]
if not all(p in prime_pos for p in nonzero_pos):
return False
for p in nonzero_pos:
if int(x[p]) != p % 10:
return False
sum_digits = sum(digits)
if not is_prime(sum_digits):
return False
product = 1
for d in digits:
product *= d
sqrt_val = math.sqrt(product)
if sqrt_val != int(sqrt_val):
return False
for i in digit_pos:
if ord(x[i - 1]) % 10 != int(x[i]):
return False
letters = [x[i] for i in range(0, 14, 2)]
vowels = set('aeiou')
vowel_count = sum(1 for c in letters if c in vowels)
if vowel_count != 1:
return False
ascii_sum = sum(ord(c) for c in letters)
if not is_prime(ascii_sum):
return False
letter_set = set(letters)
if len(letter_set) != 6:
return False
has_two = False
for l in letter_set:
count = letters.count(l)
if count > 2:
return False
if count == 2:
if has_two:
return False
has_two = True
elif count != 1:
return False
if not has_two:
return False
return True
import math
def is_prime(n):
if n < 2:
return False
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return False
return True
def mystery(x):
# P1: Type and Length
# The input must be a string of exactly 12 characters.
if not isinstance(x, str):
return False
if len(x) != 12:
return False
# P2: Alternating Character Pattern
# Characters at even indices (0, 2, 4, 6, 8, 10) must be lowercase letters.
# Characters at odd indices (1, 3, 5, 7, 9, 11) must be digits.
letters = []
digits = []
for i, char in enumerate(x):
if i % 2 == 0: # Even index
if not char.islower():
return False
letters.append(char)
else: # Odd index
if not char.isdigit():
return False
digits.append(int(char))
# P3: Digit Conditions (digits = [d0, d1, d2, d3, d4, d5] from x[1], x[3], x[5], x[7], x[9], x[11])
# D1: All 6 digits must be unique and non-zero.
if len(set(digits)) != 6 or 0 in digits:
return False
# D2: The sum of the first three digits (d0 + d1 + d2) must be a prime number.
sum_first_three_digits = digits[0] + digits[1] + digits[2]
if not is_prime(sum_first_three_digits):
return False
# D3: The sum of the last three digits (d3 + d4 + d5) must be a perfect square.
sum_last_three_digits = digits[3] + digits[4] + digits[5]
sqrt_sum_last = round(sum_last_three_digits**0.5)
if sqrt_sum_last * sqrt_sum_last != sum_last_three_digits:
return False
# D4: The number formed by concatenating the digits at odd positions within the digit list (d1, d3, d5) must be a prime number.
# (These correspond to x[3], x[7], x[11] in the original string).
concat_odd_digits_str = str(digits[1]) + str(digits[3]) + str(digits[5])
if not is_prime(int(concat_odd_digits_str)):
return False
# P4: Letter Conditions (letters = [l0, l1, l2, l3, l4, l5] from x[0], x[2], x[4], x[6], x[8], x[10])
# L1: All 6 letters must be unique.
if len(set(letters)) != 6:
return False
# L2: There must be exactly 2 vowels ('a', 'e', 'i', 'o', 'u') among the 6 letters.
vowels = {'a', 'e', 'i', 'o', 'u'}
vowel_count = sum(1 for char in letters if char in vowels)
if vowel_count != 2:
return False
# L3: The letters at positions l0, l2, and l4 (x[0], x[4], x[8]) must be in strictly ascending alphabetical order.
if not (letters[0] < letters[2] < letters[4]):
return False
# L4: The sum of the ASCII values of the 6 letters must be a multiple of 10.
sum_ascii_letters = sum(ord(char) for char in letters)
if sum_ascii_letters % 10 != 0:
return False
# P5: Cross-Type Conditions
# C1: The first digit (d0) must be equal to the value of the last letter (l5) relative to 'a' (ord(l5) - ord('a') + 1).
if digits[0] != (ord(letters[5]) - ord('a') + 1):
return False
# C2: The sum of the values of the second letter (l1) and the fourth letter (l3) (relative to 'a')
# must be equal to the sum of the second digit (d1) and the fourth digit (d3).
# (ord(l1) - ord('a') + 1) + (ord(l3) - ord('a') + 1) == d1 + d3
l1_val = ord(letters[1]) - ord('a') + 1
l3_val = ord(letters[3]) - ord('a') + 1
if (l1_val + l3_val) != (digits[1] + digits[3]):
return False
return True
import math
def is_prime(n):
if n < 2:
return False
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return False
return True
def mystery(x):
if not isinstance(x, str):
return False
if len(x) != 13:
return False
if not all(c.islower() if i % 2 == 0 else c.isdigit() for i, c in enumerate(x)):
return False
digit_positions = list(range(1, 13, 2))
digits = [int(x[i]) for i in digit_positions]
if sorted(digits) != [1, 3, 4, 6, 8, 9]:
return False
sum_digits = sum(digits)
if not is_prime(sum_digits):
return False
product = math.prod(digits)
sqrt_p = int(math.sqrt(product))
if sqrt_p ** 2 != product:
return False
letter_positions = list(range(0, 13, 2))
letters = [x[i] for i in letter_positions]
if len(set(letters)) != 7:
return False
vowels = set('aeiou')
vowel_count = sum(1 for c in letters if c in vowels)
if vowel_count != 1:
return False
ascii_sum = sum(ord(c) for c in letters)
if not is_prime(ascii_sum):
return False
for k in range(6):
digit_pos = 2 * k + 1
prev_letter = x[digit_pos - 1]
if ord(prev_letter) % 10 != digits[k]:
return False
return True
import math
def is_prime(n):
if n < 2:
return False
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return False
return True
def mystery(x):
# P1: Type and Length
# The input must be a string of exactly 9 characters.
if not isinstance(x, str):
return False
if len(x) != 9:
return False
# P2: Character Types and Positions
# Characters follow a specific pattern: L D L D D L D D L
# Letters at indices: 0, 2, 5, 7, 8 (5 letters)
# Digits at indices: 1, 3, 4, 6 (4 digits)
letters_indices = [0, 2, 5, 7, 8]
digits_indices = [1, 3, 4, 6]
letters = []
digits = []
for i, char in enumerate(x):
if i in letters_indices:
if not char.islower():
return False
letters.append(char)
elif i in digits_indices:
if not char.isdigit():
return False
digits.append(int(char))
else: # Should not happen if indices are exhaustive for length 9
return False
# (Implicitly checks for correct counts of letters and digits due to P1 and index lists)
# P3: Digit Conditions (digits = [d0, d1, d2, d3] from x[1], x[3], x[4], x[6])
# D1: All 4 digits must be unique and non-zero.
if len(set(digits)) != 4 or 0 in digits:
return False
# D2: The product of the 4 digits must be a multiple of 60.
product_digits = math.prod(digits)
if product_digits % 60 != 0:
return False
# D3: The sum of the 4 digits must be a multiple of 7.
sum_digits = sum(digits)
if sum_digits % 7 != 0:
return False
# D4: The number formed by concatenating the digits in their original order (d0d1d2d3) must be a prime number.
concatenated_digits_str = "".join(map(str, digits))
if not is_prime(int(concatenated_digits_str)):
return False
# D5: The position of the largest digit must be an even index within the 'digits' list (0-indexed).
# i.e., max(digits) must be at digits[0] or digits[2].
max_digit = max(digits)
max_digit_index_in_list = -1
for i, d_val in enumerate(digits):
if d_val == max_digit:
max_digit_index_in_list = i
break
if max_digit_index_in_list % 2 != 0:
return False
# P4: Letter Conditions (letters = [l0, l1, l2, l3, l4] from x[0], x[2], x[5], x[7], x[8])
# L1: All 5 letters must be unique.
if len(set(letters)) != 5:
return False
# L2: There must be exactly one vowel ('a', 'e', 'i', 'o', 'u') among the 5 letters.
vowels = {'a', 'e', 'i', 'o', 'u'}
vowel_count = sum(1 for char in letters if char in vowels)
if vowel_count != 1:
return False
# L3: The sum of the ASCII values of the 5 letters must be a prime number.
sum_ascii_letters = sum(ord(char) for char in letters)
if not is_prime(sum_ascii_letters):
return False
# L4: The letters at positions l1, l2, and l3 (x[2], x[5], x[7]) must be strictly consecutive in the alphabet.
# This means ord(l1)+1 == ord(l2) AND ord(l2)+1 == ord(l3).
if not (ord(letters[1]) + 1 == ord(letters[2]) and ord(letters[2]) + 1 == ord(letters[3])):
return False
# P5: Cross-Type Conditions
# C1: The ASCII value of the first letter (l0 = x[0]) modulo 3 must be equal to the first digit (d0 = x[1]).
if (ord(letters[0]) % 3) != digits[0]:
return False
# C2: The ASCII value of the letter at x[5] (l2) minus the integer value of the digit at x[4] (d2) must be 100.
if (ord(letters[2]) - digits[2]) != 100:
return False
# C3: The sum of the ASCII values of the first letter (l0 = x[0]) and the last letter (l4 = x[8]) must be a prime number.
if not is_prime(ord(letters[0]) + ord(letters[4])):
return False
return True
import math
def is_prime(n):
if n < 2:
return False
for i in range(2, int(math.sqrt(n)) + 1):
if n % i == 0:
return False
return True
def mystery(x):
if not isinstance(x, str):
return False
if len(x) != 15:
return False
for i, c in enumerate(x):
if i % 2 == 0:
if not c.islower():
return False
else:
if not c.isdigit():
return False
digit_positions = [1, 3, 5, 7, 9, 11, 13]
digits = [int(x[i]) for i in digit_positions]
nonzero_pos = [p for p in digit_positions if digits[digit_positions.index(p)] != 0]
if len(nonzero_pos) != 3:
return False
prime_pos = [3, 5, 7, 11, 13]
if not all(p in prime_pos for p in nonzero_pos):
return False
for p in nonzero_pos:
if int(x[p]) != p % 10:
return False
sum_digits = sum(digits)
if not is_prime(sum_digits):
return False
prod_nonzero = math.prod(int(x[p]) for p in nonzero_pos)
sqrt_p = int(math.sqrt(prod_nonzero))
if sqrt_p ** 2 != prod_nonzero:
return False
for i in digit_positions:
if ord(x[i - 1]) % 10 != int(x[i]):
return False
letter_positions = [0, 2, 4, 6, 8, 10, 12, 14]
letters = [x[i] for i in letter_positions]
vowels = set('aeiou')
vowel_count = sum(1 for c in letters if c in vowels)
if vowel_count != 1:
return False
ascii_sum = sum(ord(c) for c in letters)
if not is_prime(ascii_sum):
return False
letter_set = set(letters)
if len(letter_set) != 7:
return False
has_two = False
for l in letter_set:
count = letters.count(l)
if count > 2:
return False
if count == 2:
if has_two:
return False
has_two = True
elif count != 1:
return False
if not has_two:
return False
return True