← All Duels

gemini-2.5-flash_vs_claude-opus-4-5-20251101_20260124_003532.jsonl — 10 puzzles

gemini-2.5-flash
-1
vs
claude-opus-4-5-20251101
1
#1 Solved
def mystery(x):
    if not isinstance(x, str):
        return False

    n = len(x)

    # Condition 1: Specific length
    if n != 7:
        return False

    # Condition 2: All characters must be lowercase English letters
    if not all('a' <= char <= 'z' for char in x):
        return False

    product_ord_minus_96 = 1
    sum_ordinals = 0

    for char in x:
        val = ord(char) - 96 # 'a' becomes 1, 'b' becomes 2, ..., 'z' becomes 26
        product_ord_minus_96 *= val
        sum_ordinals += ord(char)

    # Condition 3: Product of (ord(char) - 96) must be a specific power of 2
    if product_ord_minus_96 != 8192: # 2^13
        return False

    # Condition 4: The sum of the ordinal values must be a prime number
    def is_prime(num):
        if num < 2:
            return False
        for i in range(2, int(num**0.5) + 1):
            if num % i == 0:
                return False
        return True

    if not is_prime(sum_ordinals):
        return False

    return True
"aaadhpp"
"abbdhdp"
Proposer: gemini-2.5-flash Solver: claude-opus-4-5-20251101
0 vs 0
#2 Solved
def mystery(x):
    if not isinstance(x, str):
        return False
    
    if len(x) != 8:
        return False
    
    if not x.isalnum() or not x.islower():
        return False
    
    checksum = 0
    for i, c in enumerate(x):
        if c.isdigit():
            checksum += int(c) * (i + 1)
        else:
            checksum += (ord(c) - ord('a') + 10) * (i + 1)
    
    if checksum != 469:
        return False
    
    if x[0] != x[-1]:
        return False
    
    if not any(c.isdigit() for c in x):
        return False
    if not any(c.isalpha() for c in x):
        return False
    
    return True
"0hihhhi0"
"2ghhhgh2"
Proposer: claude-opus-4-5-20251101 Solver: gemini-2.5-flash
0 vs 0
#3 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    if x <= 0:
        return False

    binary_x = bin(x)[2:]
    n_bits = len(binary_x)
    
    # Condition 1: Binary representation must be exactly 16 bits long
    if n_bits != 16:
        return False
    
    # Condition 2: The binary representation must have exactly 3 '1's (Hamming weight)
    if binary_x.count('1') != 3:
        return False
    
    # Condition 3: The number x must be a multiple of 13
    if x % 13 != 0:
        return False

    return True
32773
32773
Proposer: gemini-2.5-flash Solver: claude-opus-4-5-20251101
0 vs 0
#4 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    
    if x < 10000 or x > 99999:
        return False
    
    s = str(x)
    
    prod = 1
    for c in s:
        prod *= int(c)
    if prod != 1512:
        return False
    
    if x % 9 != 0:
        return False
    
    if int(s[0]) >= int(s[-1]):
        return False
    
    def is_prime(n):
        if n < 2:
            return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0:
                return False
        return True
    
    pair_sum = 0
    for i in range(4):
        pair_sum += int(s[i]) + int(s[i+1])
    
    if not is_prime(pair_sum):
        return False
    
    return True
14796
14796
Proposer: claude-opus-4-5-20251101 Solver: gemini-2.5-flash
0 vs 0
#5 Solved
def mystery(x):
    # Condition 1: Input must be a positive integer
    if not isinstance(x, int) or x <= 0:
        return False

    s_x = str(x)
    n_digits = len(s_x)

    # Condition 2: x must be a 5-digit number
    if n_digits != 5:
        return False

    # Condition 3: x must be a perfect square
    # Calculate integer square root and check if it's exact
    sqrt_x = int(x**0.5)
    if sqrt_x * sqrt_x != x:
        return False

    # Condition 4: The number x must be divisible by 13
    if x % 13 != 0:
        return False

    # Condition 5: The string representation of x must contain at least one even digit and at least one odd digit
    has_even = False
    has_odd = False
    sum_digits = 0
    for char_digit in s_x:
        digit = int(char_digit)
        sum_digits += digit
        if digit % 2 == 0:
            has_even = True
        else:
            has_odd = True
    
    if not (has_even and has_odd):
        return False

    # Condition 6: The sum of the digits of x must be a prime number
    def is_prime(num):
        if num < 2:
            return False
        for i in range(2, int(num**0.5) + 1):
            if num % i == 0:
                return False
        return True

    if not is_prime(sum_digits):
        return False

    return True
20449
20449
Proposer: gemini-2.5-flash Solver: claude-opus-4-5-20251101
0 vs 0
#6 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    
    if x < 10000 or x > 99999:
        return False
    
    s = str(x)
    
    # Must be a palindrome
    if s != s[::-1]:
        return False
    
    # Must be divisible by 11
    if x % 11 != 0:
        return False
    
    # x/11 must be prime
    quotient = x // 11
    def is_prime(n):
        if n < 2:
            return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0:
                return False
        return True
    
    if not is_prime(quotient):
        return False
    
    # The middle digit must be odd
    if int(s[2]) % 2 == 0:
        return False
    
    # Sum of digits must be > 20
    if sum(int(c) for c in s) <= 20:
        return False
    
    return True
95359
98989
Proposer: claude-opus-4-5-20251101 Solver: gemini-2.5-flash
0 vs 0
#7 Sample Solution Wrong
def mystery(x):
    # Condition 1: Input must be a string
    if not isinstance(x, str):
        return False

    n = len(x)

    # Condition 2: The string must be exactly 7 characters long
    if n != 7:
        return False

    # Condition 3: All characters must be digits
    if not x.isdigit():
        return False

    # Convert string to integer for numerical checks
    int_x = int(x)

    # Helper function to check for primality
    def is_prime(num):
        if num < 2:
            return False
        # Optimized loop for primality test
        for i in range(2, int(num**0.5) + 1):
            if num % i == 0:
                return False
        return True

    # Condition 4: The integer value of x must be a prime number
    if not is_prime(int_x):
        return False

    # Calculate sum and product of digits, and count prime digits
    sum_digits = 0
    prod_digits = 1
    prime_digits_count = 0
    # Define the set of prime digits for easy checking
    prime_digit_set = {2, 3, 5, 7}

    for char_digit in x:
        digit = int(char_digit)
        sum_digits += digit
        prod_digits *= digit
        if digit in prime_digit_set:
            prime_digits_count += 1

    # Condition 5: The sum of the digits must be a prime number
    if not is_prime(sum_digits):
        return False

    # Condition 6: The product of the digits must be a perfect square
    # Note: 0 is considered a perfect square (0 * 0 = 0)
    def is_perfect_square(num):
        if num < 0:
            return False
        if num == 0: # Special case: product is 0 if any digit is 0
            return True
        sqrt_num = int(num**0.5)
        return sqrt_num * sqrt_num == num

    if not is_perfect_square(prod_digits):
        return False

    # Condition 7: The string must contain exactly two prime digits (from 2, 3, 5, 7)
    if prime_digits_count != 2:
        return False

    # Condition 8: The sum of the first three digits must equal the sum of the last three digits
    sum_first_three = int(x[0]) + int(x[1]) + int(x[2])
    sum_last_three = int(x[4]) + int(x[5]) + int(x[6])

    if sum_first_three != sum_last_three:
        return False

    return True
"6081239"
Proposer: gemini-2.5-flash Solver: claude-opus-4-5-20251101
-1 vs 0
#8 Solver Failed
def mystery(x):
    if not isinstance(x, int):
        return False
    
    if x < 100000 or x > 999999:
        return False
    
    s = str(x)
    
    # All digits must be distinct
    if len(set(s)) != 6:
        return False
    
    def is_prime(n):
        if n < 2:
            return False
        for i in range(2, int(n**0.5) + 1):
            if n % i == 0:
                return False
        return True
    
    # Must be a perfect cube
    cr = round(x ** (1/3))
    cube_root = None
    for candidate in [cr - 1, cr, cr + 1]:
        if candidate > 0 and candidate ** 3 == x:
            cube_root = candidate
            break
    
    if cube_root is None:
        return False
    
    # Cube root must be prime
    if not is_prime(cube_root):
        return False
    
    # Digit sum divisible by 7
    digit_sum = sum(int(c) for c in s)
    if digit_sum % 7 != 0:
        return False
    
    # First digit < last digit
    if int(s[0]) >= int(s[-1]):
        return False
    
    # Sum of adjacent digit products must be prime
    adj_prod_sum = 0
    for i in range(5):
        adj_prod_sum += int(s[i]) * int(s[i+1])
    
    if not is_prime(adj_prod_sum):
        return False
    
    return True
389017`
389017
Proposer: claude-opus-4-5-20251101 Solver: gemini-2.5-flash
-1 vs 1
#9 Solved
def mystery(x):
    # Condition 1: Input must be a string
    if not isinstance(x, str):
        return False

    n = len(x)

    # Condition 2: The string must be exactly 6 characters long
    if n != 6:
        return False

    # Condition 3: Characters at even indices (0, 2, 4) must be digits.
    # Characters at odd indices (1, 3, 5) must be lowercase English letters.
    for i in range(n):
        if i % 2 == 0: # Even index, must be a digit
            if not x[i].isdigit():
                return False
        else: # Odd index, must be a lowercase letter
            if not ('a' <= x[i] <= 'z'):
                return False

    # Extract digits and letters based on their positions
    digits_str = x[0] + x[2] + x[4]
    letters_str = x[1] + x[3] + x[5]

    # Condition 4: The number formed by concatenating the digits must be a perfect cube.
    # It must also be a valid 3-digit number (i.e., x[0] cannot be '0').
    num_from_digits = int(digits_str)
    if num_from_digits < 100 or num_from_digits > 999:
        return False

    cube_root_candidate = round(num_from_digits**(1/3))
    if cube_root_candidate**3 != num_from_digits:
        return False

    # Condition 5: The sum of the 'a'-based ordinal values of the letters must be a prime number.
    # ('a' = 1, 'b' = 2, ..., 'z' = 26)
    sum_letter_values = 0
    for char_letter in letters_str:
        sum_letter_values += (ord(char_letter) - ord('a') + 1)

    def is_prime(num):
        if num < 2:
            return False
        for i in range(2, int(num**0.5) + 1):
            if num % i == 0:
                return False
        return True

    if not is_prime(sum_letter_values):
        return False

    # Condition 6: The integer value of the first digit (x[0]) must be equal to
    # the 'a'-based ordinal value of the first letter (x[1]).
    if int(x[0]) != (ord(x[1]) - ord('a') + 1):
        return False

    # Condition 7: The number formed by concatenating the digits (num_from_digits) must be divisible by 7.
    if num_from_digits % 7 != 0:
        return False

    return True
"3c4a3a"
"3c4a3a"
Proposer: gemini-2.5-flash Solver: claude-opus-4-5-20251101
-1 vs 1
#10 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    
    if x < 10000000 or x > 99999999:
        return False
    
    s = str(x)  # 8 digits
    
    # Split into two 4-digit numbers
    left = int(s[:4])
    right = int(s[4:])
    
    # Both must be perfect squares
    sqrt_left = int(left ** 0.5)
    sqrt_right = int(right ** 0.5)
    
    if sqrt_left * sqrt_left != left or sqrt_right * sqrt_right != right:
        return False
    
    # Their product must be a perfect cube
    prod = left * right
    cube_root = round(prod ** (1/3))
    if cube_root ** 3 != prod:
        return False
    
    # Sum of all digits must be 27
    if sum(int(c) for c in s) != 27:
        return False
    
    # right must be strictly greater than left
    if left >= right:
        return False
    
    return True
12962304
12962304
Proposer: claude-opus-4-5-20251101 Solver: gemini-2.5-flash
-1 vs 1