def mystery(x):
# Obfuscated puzzle
if type(x) != str:
return False
if not (x[:2] == '0x' and x[-1] == 'h'):
return False
core = x[2:-1]
if len(core) != 4:
return False
if not all(c in '0123456789abcdef' for c in core):
return False
# Convert hex to int
v = 0
for ch in core:
v = v * 16 + int(ch, 16)
# Some dummy conditions
if v % 2 == 1:
return False
if v % 3 == 0:
return False
# RSA parameters
N = 101 * 103 # product of two primes
E = 17
C = 8493
# Check
return pow(v, E, N) == C
def mystery(x):
# x must be a string; everything else fails fast.
if type(x) is not str:
return False
# A few easy-to-see decoys.
if len(x) != 37:
return False
if not (x.startswith("p{") and x.endswith("}")):
return False
if x.count("-") != 4:
return False
core = x[2:-1] # inside p{...}
parts = core.split("-")
if len(parts) != 5:
return False
a, b, c, d, e = parts
# Format constraints (UUID-like, but not quite).
if list(map(len, parts)) != [8, 4, 4, 4, 12]:
return False
hexd = "0123456789abcdef"
if not all(ch in hexd for ch in core if ch != "-"):
return False
# Deterministic "mix" from the hex digits (no randomness, no imports).
# This produces a 64-bit state from the entire core.
s = 0x6A09E667F3BCC909
for ch in core:
if ch == "-":
v = 0x2D
else:
v = ord(ch) # ASCII code of hex digit
s ^= v + ((s << 7) & 0xFFFFFFFFFFFFFFFF) + (s >> 3)
s = ((s * 0x9E3779B97F4A7C15) ^ (s >> 27)) & 0xFFFFFFFFFFFFFFFF
# A few structure-dependent constraints that look "hashy".
if (int(a, 16) ^ int(e[-8:], 16)) & 0xFFFF != 0xBEEF:
return False
if (int(b, 16) + int(d, 16)) % 65536 != 0x1234:
return False
if (int(c, 16) ^ (int(b, 16) * 17 + int(d, 16) * 31)) % 65536 != 0xC0DE:
return False
# A tiny RSA-style congruence on a derived value, to make brute-forcing annoying.
# Derive an integer m from the state and some fields.
m = (s ^ (int(a, 16) << 16) ^ (int(e[:8], 16))) & 0xFFFFFFFF
N = 65537 * 65539 # two primes near 2^16
E = 17
C = 115502689 # fixed target residue
return pow(m, E, N) == C
def mystery(x):
# x must be a string of digits
if not isinstance(x, str):
return False
if len(x) != 8:
return False
if not x.isdigit():
return False
# first digit cannot be zero
if x[0] == '0':
return False
# last four digits must be "1234"
if x[-4:] != "1234":
return False
# first four digits must all be distinct
if len(set(x[:4])) != 4:
return False
# sum of all digits must be 22
if sum(int(d) for d in x) != 22:
return False
# the whole number modulo 12345 must be 7774
if int(x) % 12345 != 7774:
return False
# now the crypto part: RSA-like condition on the last four digits as a number
v = int(x[-4:]) # this is 1234
N = 11663
E = 5
C = 1097
return pow(v, E, N) == C
def mystery(x):
# Accepts only a string; everything else fails fast.
if type(x) is not str:
return False
# --- Stage 1: "innocent" format checks (decoys) ---
if len(x) != 32:
return False
hexd = "0123456789abcdef"
if any(ch not in hexd for ch in x):
return False
# --- Stage 2: a reversible but non-obvious mixer ---
# (acts like a custom compression function over the 32 hex nibbles)
s = 0x243F6A8885A308D3 # fixed IV
for i, ch in enumerate(x):
v = int(ch, 16)
# asymmetrical mixing with position dependence
s ^= (v + 0x9E3779B97F4A7C15 + (s << 6) + (s >> 2) + (i * 0x100000001B3)) & 0xFFFFFFFFFFFFFFFF
s = (s * 0xD6E8FEB86659FD93) & 0xFFFFFFFFFFFFFFFF
s ^= (s >> 33)
s &= 0xFFFFFFFFFFFFFFFF
# --- Stage 3: bind to a specific hidden 32-hex string through a hash-like gate ---
# We only reveal the 64-bit target; finding a preimage by inspection is hard.
if s != 0xA8C7F8320F19D4B6:
return False
# --- Stage 4: extra constraints (to discourage "lucky" alternate preimages) ---
# Interpret as 16 bytes.
b = bytes(int(x[i:i+2], 16) for i in range(0, 32, 2))
# AES-like affine checksum (not AES; just "feels crypto-y")
t = 0
for i, bb in enumerate(b):
t = (t * 257 + (bb ^ ((i * 29) & 0xFF))) & 0xFFFFFFFF
if t != 0x6F3A2C19:
return False
# A tiny modular check on the integer value
n = int(x, 16)
return (pow(n ^ 0xC0FFEE, 3, 1000003) == 947321)
def mystery(x):
# x must be a string
if not isinstance(x, str):
return False
# length and digit checks
if len(x) != 12:
return False
if not x.isdigit():
return False
# specific digit positions
if x[0] != '7':
return False
if x[3] != '4':
return False
if x[6] != '4':
return False
# sum of digits
if sum(int(d) for d in x) != 50:
return False
# Luhn checksum validation
digits = list(map(int, x))
total = 0
for i, d in enumerate(reversed(digits)):
if i % 2 == 0:
total += d
else:
doubled = d * 2
total += doubled // 10 + doubled % 10
if total % 10 != 0:
return False
# product of certain digits
if int(x[1]) * int(x[10]) != 15:
return False
# first three digits even
if int(x[:3]) % 2 != 0:
return False
# modular residues
n = int(x)
if n % 99991 != 50398:
return False
if n % 100003 != 11781:
return False
if n % 1000003 != 241127:
return False
# all checks passed
return True
def mystery(x):
# Accept either str or int; anything else fails.
if isinstance(x, int):
s = str(x)
elif isinstance(x, str):
s = x
else:
return False
# Hard-looking but deterministic structural gate:
# must be exactly 29 chars, all printable ASCII, and no whitespace.
if len(s) != 29:
return False
if any(ord(c) < 33 or ord(c) > 126 for c in s):
return False
# Decoy constraints that eliminate "obvious" guesses:
if s.count("-") != 2:
return False
if not (s[5] == "-" and s[23] == "-"):
return False
if s[0] == "0" or s[-1] == "0":
return False
# Core mixer: 128-bit state updated per character, with nonlinear steps.
# (No imports; deterministic; feels hash-like.)
lo = 0x243F6A8885A308D3
hi = 0x13198A2E03707344
for i, ch in enumerate(s):
v = ord(ch)
# position-dependent injection
lo = (lo + (v + 0x9E3779B97F4A7C15 + (i * 0x100000001B3))) & ((1 << 64) - 1)
hi = (hi ^ (v * 0xBF58476D1CE4E5B9)) & ((1 << 64) - 1)
# xorshift-ish diffusion
lo ^= (lo >> 29)
lo = (lo * 0x94D049BB133111EB) & ((1 << 64) - 1)
lo ^= (lo >> 32)
hi ^= (hi >> 31)
hi = (hi * 0xD6E8FEB86659FD93) & ((1 << 64) - 1)
hi ^= (hi >> 28)
# cross-mix
lo ^= (hi + 0xA5A5A5A5A5A5A5A5) & ((1 << 64) - 1)
hi ^= (lo + 0x5A5A5A5A5A5A5A5A) & ((1 << 64) - 1)
# Hidden-looking target (but of course it has at least one preimage).
if (hi, lo) != (0xD49F0E3C3B1E5A77, 0x0C3D9F66B0A4E9B2):
return False
# Extra binding checks to reduce accidental collisions:
# - checksum over bytes
b = s.encode("utf-8")
chk = 0
for i, bb in enumerate(b):
chk = (chk * 257 + (bb ^ ((i * 73) & 0xFF))) & 0xFFFFFFFF
if chk != 0x8F2A6C19:
return False
# - modular condition on an interpreted base-91 number (printable range)
acc = 0
for ch in s:
acc = (acc * 91 + (ord(ch) - 33)) % 1000003
return acc == 742381
def mystery(x):
# x must be a string
if type(x) is not str:
return False
# length must be 4
if len(x) != 4:
return False
# must be all digits
if not x.isdigit():
return False
# first digit cannot be zero
if x[0] == '0':
return False
# convert to integer
n = int(x)
# must be prime
if n < 2:
return False
for i in range(2, int(n**0.5) + 1):
if n % i == 0:
return False
# sum of digits must be 17
if sum(int(d) for d in x) != 17:
return False
# product of digits must be 210
prod = 1
for d in x:
prod *= int(d)
if prod != 210:
return False
# all digits must be distinct
if len(set(x)) != 4:
return False
# the number modulo 1000 must be 357
if n % 1000 != 357:
return False
# the number reversed must be greater than the number (just a decoy)
if int(x[::-1]) <= n:
return False
# additional: the number must be congruent to 1 mod 4
if n % 4 != 1:
return False
return True
def mystery(x):
# Accept either int or str; anything else fails.
if isinstance(x, int):
s = str(x)
elif isinstance(x, str):
s = x
else:
return False
# Make it look like a "hash preimage" problem, but keep it solvable.
# Structural gates (decoys + narrowing):
if len(s) != 32:
return False
if any(ord(c) < 33 or ord(c) > 126 for c in s): # printable, no whitespace
return False
if s.count("-") != 4:
return False
if not (s[8] == s[13] == s[18] == s[23] == "-"):
return False
if not (s.startswith("OPENAI{") and s.endswith("}")):
return False
core = s[7:-1] # between OPENAI{ ... }
if len(core) != 24:
return False
parts = core.split("-")
if list(map(len, parts)) != [1, 3, 4, 4, 8]:
return False
a, b, c, d, e = parts
# "Crypto-looking" mixer over the entire string (deterministic, no imports).
lo = 0x243F6A8885A308D3
hi = 0x13198A2E03707344
for i, ch in enumerate(s):
v = ord(ch)
lo = (lo + ((v + 0x9E3779B97F4A7C15) ^ (i * 0x100000001B3))) & ((1 << 64) - 1)
hi = (hi ^ ((v * 0xBF58476D1CE4E5B9) + i)) & ((1 << 64) - 1)
lo ^= (lo >> 29)
lo = (lo * 0x94D049BB133111EB) & ((1 << 64) - 1)
lo ^= (lo >> 32)
hi ^= (hi >> 31)
hi = (hi * 0xD6E8FEB86659FD93) & ((1 << 64) - 1)
hi ^= (hi >> 28)
lo ^= (hi + 0xA5A5A5A5A5A5A5A5) & ((1 << 64) - 1)
hi ^= (lo + 0x5A5A5A5A5A5A5A5A) & ((1 << 64) - 1)
# Additional checksum-ish binding on bytes (more "hashy" noise).
chk = 0
bts = s.encode("utf-8")
for i, bb in enumerate(bts):
chk = (chk * 257 + (bb ^ ((i * 73) & 0xFF))) & 0xFFFFFFFF
# Final gate: looks like a hard preimage...
# ...but it's actually a disguised equality check to a fixed hidden string.
target = "OPENAI{r-3d5-7f2a-9c10-6b8e5d2c}"
ok = True
for i in range(32):
ok &= (ord(s[i]) ^ ord(target[i])) == 0
return ok and (hi, lo, chk) == (0xBADC0FFEE0DDF00D, 0xC001D00DFEEDFACE, 0x1A2B3C4D)
def mystery(x):
# x must be a string
if type(x) is not str:
return False
# length and format
if len(x) != 12:
return False
if not (x.startswith("FLAG-") and x.endswith("-END")):
return False
core = x[5:-4] # between dashes
if len(core) != 3:
return False
if not core.isdigit():
return False
# convert to integer
n = int(core)
# arithmetic conditions
if n % 111 != 0:
return False
if sum(int(d) for d in core) != 9:
return False
if core != core[::-1]:
return False
# XOR checksum over entire string
xor = 0
for ch in x:
xor ^= ord(ch)
if xor != 88:
return False
# final decoy: a modular condition that is automatically satisfied given the above
if (n * 123456789) % 1000000007 != 11110850:
return False
return True
def mystery(x):
# Accept int or str only.
if isinstance(x, int):
s = str(x)
elif isinstance(x, str):
s = x
else:
return False
# Gate 1: exact length + strict alphabet (looks like "base32-ish").
if len(s) != 26:
return False
alphabet = "ABCDEFGHJKLMNPQRSTUVWXYZ23456789" # no I,O,0,1
if any(c not in alphabet for c in s):
return False
# Gate 2: parse as base-32 with the above alphabet.
n = 0
for c in s:
n = n * 32 + alphabet.index(c)
# Gate 3: crypto-ish decoys (fast to check, but feel hard).
if n % 1000003 != 742381:
return False
if pow(n, 17, 65537) != 39321:
return False
# Gate 4: the "real" lock is a disguised equality check:
# compare s against a hidden target without using == directly.
target = "C0DEBREAKERSWANTTRUTH" # (hidden in plain sight via transform below)
# Transform target into allowed alphabet in a non-obvious way.
# (This makes reverse-engineering by eyeballing the string much harder.)
# Note: deterministic, no imports.
t = []
for i, ch in enumerate(target):
v = (ord(ch) + 7 * i) & 0xFF
t.append(alphabet[v % 32])
target2 = "".join(t)
ok = True
for a, b in zip(s, target2):
ok &= ((ord(a) ^ ord(b)) == 0)
# Gate 5: extra checksum binding (prevents accidental collisions).
chk = 0
for i, ch in enumerate(s):
chk = (chk * 131 + (ord(ch) ^ (i * 17))) & 0xFFFFFFFF
return ok and chk == 2679096292