def mystery(x):
if not isinstance(x, str):
return False
if len(x) != 8 or not x.isdigit() or x[0] == '0':
return False
n = int(x)
return n * n % 100000000 == n
import struct
def mystery(x):
"""
This function takes a value x and returns True if it meets a hidden condition, False otherwise.
"""
if not isinstance(x, float):
return False
# Avoid non-finite numbers like NaN or infinity, as their bit representation is special.
if x != x or x == float('inf') or x == float('-inf'):
return False
try:
# Pack the float into its 8-byte (64-bit) representation using IEEE 754 standard.
# The '!' ensures network (big-endian) byte order.
packed_float = struct.pack('!d', x)
# Unpack the 8 bytes into a 64-bit unsigned integer.
# This gives us the raw integer value of the float's bit pattern.
integer_representation = struct.unpack('!Q', packed_float)[0]
# Convert the integer to its binary string representation.
# [2:] removes the '0b' prefix.
# .zfill(64) pads with leading zeros to ensure it's always 64 bits long.
binary_representation = bin(integer_representation)[2:].zfill(64)
# The mystery condition: the binary representation must be a palindrome.
return binary_representation == binary_representation[::-1]
except (struct.error, OverflowError):
# Catch potential errors with unusual float values.
return False
def mystery(x):
if not isinstance(x, int):
return False
# Convert to 32-bit unsigned representation
x = x & 0xFFFFFFFF
# XOR with a magic number
y = (x ^ 0xDEADBEEF) & 0xFFFFFFFF
# Swap the two 16-bit halves
z = ((y >> 16) | ((y & 0xFFFF) << 16)) & 0xFFFFFFFF
# Check against target
return z == 0xCAFEBABE
import hashlib
def _is_prime(n):
"""
A probabilistic primality test (Miller-Rabin).
It is deterministic for all integers up to 3.3*10^14 with this set of bases.
For a 256-bit number, the probability of a composite being falsely identified
as prime is astronomically low.
"""
if n < 2:
return False
if n == 2 or n == 3:
return True
if n % 2 == 0 or n % 3 == 0:
return False
d = n - 1
s = 0
while d % 2 == 0:
d //= 2
s += 1
# A set of bases that are highly effective for 256-bit numbers.
bases = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
for a in bases:
if a >= n:
break
# Check Fermat's Little Theorem: a^(n-1) = 1 (mod n)
# but in a way that handles the Miller-Rabin conditions.
x = pow(a, d, n)
if x == 1 or x == n - 1:
continue
# Check if we find a non-trivial square root of 1 modulo n.
# If we do, n is composite.
is_composite = True
for _ in range(s - 1):
x = pow(x, 2, n)
if x == n - 1:
is_composite = False
break
if is_composite:
return False
return True
def mystery(x):
"""
This function takes a value x and returns True if it meets a hidden condition, False otherwise.
"""
if not isinstance(x, str):
return False
# The input string must not be empty.
if not x:
return False
try:
# Step 1: Encode the string into bytes using UTF-8.
encoded_x = x.encode('utf-8')
# Step 2: Compute the SHA-256 hash of the bytes.
hasher = hashlib.sha256()
hasher.update(encoded_x)
hex_digest = hasher.hexdigest()
# Step 3: Interpret the hexadecimal hash digest as a large integer.
large_integer = int(hex_digest, 16)
# Step 4: The mystery condition - check if this large integer is a prime number.
return _is_prime(large_integer)
except Exception:
# Catch any unexpected errors during the process.
return False
def mystery(x):
# Accept either string or integer
if isinstance(x, str):
try:
x = int(x)
except ValueError:
return False
if not isinstance(x, int):
return False
if x <= 0:
return False
# Several decoy conditions that the solution must satisfy
if x % 13 == 0: # not divisible by 13
return False
if pow(x, 2, 11) != 4: # square modulo 11 must be 4
return False
if sum(int(d) for d in str(x)) % 2 != 0: # digit sum even
return False
if x % 9 != 6: # modulo 9 condition
return False
# Core puzzle: find x such that x^3 mod 28891 equals a specific target
modulus = 28891
target = 16306
# Compute x^3 modulo modulus using manual multiplication
x_sq = (x * x) % modulus
x_cube = (x_sq * x) % modulus
return x_cube == target
def mystery(x):
"""
This function takes a value x and returns True if it meets a hidden condition, False otherwise.
The fate of the mission depends on your selection.
"""
# A set of pre-defined artifacts, each with a 'mass' and 'potency'
artifacts = [
(91, 72), (22, 94), (20, 22), (94, 66), (97, 21), (43, 83), (49, 39), (51, 89),
(10, 41), (92, 53), (44, 42), (10, 80), (14, 21), (58, 44), (43, 63), (35, 71),
(49, 43), (29, 31), (39, 78), (36, 11), (74, 98), (68, 41), (74, 57), (45, 12),
(73, 82), (76, 22), (11, 44), (94, 95), (13, 11), (30, 28), (20, 20), (18, 52),
(23, 100), (95, 71), (57, 51), (76, 79)
]
# The carrying limit of the vessel
mass_limit = 1042
# The required total potency to activate the device
target_potency = 1599
if not isinstance(x, str) or len(x) != len(artifacts):
return False
# The selection must be a binary choice for each artifact.
if not all(c in '01' for c in x):
return False
current_mass = 0
current_potency = 0
for i, choice in enumerate(x):
if choice == '1':
mass, potency = artifacts[i]
current_mass += mass
current_potency += potency
if current_mass > mass_limit:
return False
return current_potency == target_potency
def mystery(x):
if isinstance(x, str):
if not x.isdigit():
return False
x = int(x)
elif not isinstance(x, int):
return False
if x <= 0:
return False
if x % 2 == 0:
return False
if x % 11 != 0:
return False
if x % 13 != 0:
return False
b = bin(x)[2:]
if b != b[::-1]:
return False
ones = b.count('1')
if ones < 2:
return False
for i in range(2, int(ones**0.5) + 1):
if ones % i == 0:
return False
if x % 143 != 0:
return False
return True
import hashlib
def mystery(x):
"""
This function takes a value x and returns True if it meets a hidden condition, False otherwise.
"""
# --- Maze Definition ---
# The maze is infinite and generated on-the-fly. A tile is a wall
# or an open space based on a cryptographic hash of its coordinates.
_MAZE_SALT = "a_very_secret_salt_string_for_the_maze_v2"
_TARGET_X, _TARGET_Y = 16, 13
_START_X, _START_Y = 0, 0
def _is_wall(px, py):
"""Determines if a coordinate is a wall based on its hash."""
h = hashlib.sha256(f"{px}:{py}:{_MAZE_SALT}".encode()).hexdigest()
# A wall exists if the first hex digit is in the set {'0', '1', '2', '3', '4', '5'}.
# This creates a wall density of 6/16 or 37.5%.
return h[0] in '012345'
# --- Input Validation ---
if not isinstance(x, str) or not all(c in 'UDLR' for c in x):
return False
# --- Path Simulation ---
current_x, current_y = _START_X, _START_Y
# The starting position itself must not be a wall. This is a subtle
# but important check for the maze's validity.
if _is_wall(current_x, current_y):
return False
# Simulate the path taken by the input string 'x'.
for move in x:
if move == 'U':
current_y += 1
elif move == 'D':
current_y -= 1
elif move == 'L':
current_x -= 1
elif move == 'R':
current_x += 1
# If any move leads into a wall, the path is invalid.
if _is_wall(current_x, current_y):
return False
# The path is only successful if it ends exactly at the target coordinates.
return (current_x, current_y) == (_TARGET_X, _TARGET_Y)
def mystery(x):
"""
Returns True if x satisfies a set of hidden conditions, False otherwise.
x can be an integer or a string representing an integer.
"""
# Convert to integer if string
if isinstance(x, str):
if not x.isdigit():
return False
x = int(x)
elif not isinstance(x, int):
return False
# Must be a 9‑digit number
if not (100_000_000 <= x <= 999_999_999):
return False
# Cannot end with 0
if x % 10 == 0:
return False
# Not divisible by 3
if x % 3 == 0:
return False
# Congruence modulo 7
if x % 7 != 3:
return False
# Core condition: cube modulo 1 000 000 000 equals the number itself
if pow(x, 3, 1_000_000_000) != x:
return False
return True
import math
def mystery(x):
"""
This function takes a value x and returns True if it meets a hidden set of conditions, False otherwise.
"""
# Helper to check for primality.
# A standard implementation to avoid drawing too much attention.
def _is_prime(n):
if n < 2: return False
if n == 2 or n == 3: return True
if n % 2 == 0 or n % 3 == 0: return False
i = 5
while i * i <= n:
if n % i == 0 or n % (i + 2) == 0:
return False
i += 6
return True
# --- Input Validation and Filtering ---
if not isinstance(x, int):
return False
# Condition 1: Must be a large number.
if x <= 1_000_000:
return False
# Condition 2: A simple divisibility rule.
if x % 5 != 0:
return False
# Condition 3: Another divisibility rule to narrow the search.
if x % 3 == 0:
return False
# Condition 4: A property related to the digits of the number.
# This might mislead the solver into thinking it's a digit-based puzzle.
try:
digit_sum = sum(int(d) for d in str(x))
if not _is_prime(digit_sum):
return False
except ValueError:
return False
# --- Core Puzzle Logic ---
# This section calculates the "stopping time" of a sequence.
# The sequence is the famous Collatz sequence.
n = x
steps = 0
# A limit to prevent potential (though conjectured not to exist) infinite loops.
# Also serves to cap the computation time for any single input.
max_steps = 600
while n != 1:
if steps > max_steps:
# If it takes too long, it's not our number.
return False
if n % 2 == 0:
n = n // 2
else:
# The 3n + 1 step.
n = 3 * n + 1
steps += 1
# The final condition: the number of steps must match a specific target.
target_steps = 500
return steps == target_steps