← All Duels

deepseek-reasoner_vs_gemini-2.5-flash_20260124_022704.jsonl — 10 puzzles

deepseek-reasoner
0
vs
gemini-2.5-flash
-5
#1 Sample Solution Wrong
def mystery(x):
    # Handle both string and integer inputs
    if isinstance(x, str):
        # Try to convert from hex if starts with 0x, else decimal
        if x.startswith('0x'):
            try:
                x = int(x, 16)
            except ValueError:
                return False
        else:
            try:
                x = int(x)
            except ValueError:
                return False
    # Ensure x is a positive integer (though negative could work but we restrict)
    if x < 0:
        return False
    # Obfuscated computation that reduces to a linear equation with unique solution
    a = x ^ 0x12345678
    b = a + 0x9ABCDEF0
    c = b ^ 0xFEDCBA98
    d = c + 0x13579BDF
    e = d ^ 0x2468ACE0
    # The target constant is computed for x = 42
    return e == 0x635E3759
42
Proposer: deepseek-reasoner Solver: gemini-2.5-flash
-1 vs 0
#2 Sample Solution Wrong
import hashlib

def mystery(x):
    """
    This function takes a value x (either string or number) and returns a boolean.
    It performs a series of transformations and checks on x to determine if it's "True".
    """
    
    val = 0
    
    # Step 1: Normalize x to a non-negative integer 'val'
    if isinstance(x, str):
        # If x is a string, it must be exactly 16 hexadecimal characters long.
        # It is then converted to an integer.
        if len(x) != 16:
            return False
        try:
            val = int(x, 16)
        except ValueError:
            return False
    elif isinstance(x, (int, float)):
        # If x is a number, it must be a non-negative integer.
        # Floats are accepted only if they represent an exact integer.
        if isinstance(x, float):
            if x != int(x):
                return False
            x = int(x)
        
        if not isinstance(x, int) or x < 0:
            return False
        val = x
    else:
        # Any other type is not accepted.
        return False

    # Step 2: Apply a series of complex transformations to 'val'
    # These constants are chosen to be large and seemingly arbitrary.
    # C1 is added, then the result is XORed with C2.
    C1 = 0x87654321FEDCBA90  # A large hexadecimal constant
    C2 = 0x123456789ABCDEF0  # Another large hexadecimal constant

    intermediate_val = (val + C1) ^ C2
    
    # Step 3: Compute the SHA256 hash of the string representation of the intermediate value.
    # The hash must start with a specific, hard-to-find prefix.
    hash_input_str = str(intermediate_val).encode('utf-8')
    sha256_hash = hashlib.sha256(hash_input_str).hexdigest()
    
    # The target prefix makes finding a solution very difficult without brute-force search.
    # A longer prefix increases difficulty exponentially.
    TARGET_HASH_PREFIX = "00000" # Requires approximately 2^20 attempts on average for the hash.

    return sha256_hash.startswith(TARGET_HASH_PREFIX)
"2ed113f77bd41680"
Proposer: gemini-2.5-flash Solver: deepseek-reasoner
-1 vs -1
#3 Solved
import hashlib

def mystery(x):
    # Convert x to a string
    if isinstance(x, (int, float)):
        x = str(x)
    elif not isinstance(x, str):
        return False
    
    # Compute SHA256 of the string representation of x
    h = hashlib.sha256(x.encode()).hexdigest()
    
    # Compute target prefix from a hidden seed
    seed_num = 448378203247  # This is the integer representation of the ASCII string 'hello'
    seed_bytes = seed_num.to_bytes(5, 'big')
    target_prefix = hashlib.sha256(seed_bytes).hexdigest()[:6]
    
    return h.startswith(target_prefix)
"hello"
'hello'
Proposer: deepseek-reasoner Solver: gemini-2.5-flash
-1 vs -1
#4 Sample Solution Wrong
import math

def mystery(x):
    """
    This function takes a value x (either string or number) and returns a boolean.
    It performs a series of complex transformations involving bitwise operations,
    arithmetic, and conditional logic, culminating in a check for specific
    numerical properties.
    """
    
    # Step 1: Normalize x to a 64-bit unsigned integer 'val'
    val = 0
    if isinstance(x, str):
        # Accepts hexadecimal (0x prefix) or decimal string representations
        try:
            if x.startswith('0x') or x.startswith('0X'):
                val = int(x, 16)
            else:
                val = int(x)
        except ValueError:
            return False
    elif isinstance(x, (int, float)):
        # Floats are accepted only if they represent an exact integer.
        if isinstance(x, float):
            if not x.is_integer():
                return False
            val = int(x)
        else:
            val = x
    else:
        # Any other type is not accepted.
        return False

    # Ensure val is non-negative and fits within a 64-bit unsigned integer range.
    # This prevents overflow issues and keeps the problem space bounded.
    MAX_64_BIT = 0xFFFFFFFFFFFFFFFF
    if val < 0 or val > MAX_64_BIT:
        return False

    # Step 2: Apply a series of complex, chained transformations
    # These constants are chosen to be large and seemingly arbitrary,
    # making reverse engineering challenging.
    C_A = 0x1A85F2C5B4E3D2A1  # A large prime number
    C_B = 0x3F7E5D9C1B8A6F4D  # A large composite number
    
    # Magic constants used in the conditional branches
    MAGIC_EVEN = 0xDEADBEEFCAFEBABE
    MAGIC_ODD = 0x1122334455667788

    # Transformation 1: XOR with C_A, then rotate left by 7 bits (64-bit)
    v1 = val ^ C_A
    v1 = ((v1 << 7) | (v1 >> (64 - 7))) & MAX_64_BIT

    # Transformation 2: Add C_B, multiply by 13, then XOR with C_A
    # The multiplication by 13 (a prime) within 64-bit modular arithmetic
    # makes this step difficult to reverse without knowledge of modular inverses.
    v2_intermediate = (v1 + C_B) & MAX_64_BIT
    v2_intermediate = (v2_intermediate * 13) & MAX_64_BIT
    v2 = v2_intermediate ^ C_A

    # Step 3: Conditional branching based on the parity of v2
    # This introduces two distinct computational paths, significantly increasing difficulty.
    v3 = 0
    if v2 % 2 == 0:
        # Even path: Add C_A, then XOR with MAGIC_EVEN
        v3 = (v2 + C_A) & MAX_64_BIT
        v3 = v3 ^ MAGIC_EVEN
    else:
        # Odd path: XOR with C_B, then subtract MAGIC_ODD
        v3 = (v2 ^ C_B) & MAX_64_BIT
        v3 = (v3 - MAGIC_ODD) & MAX_64_BIT # Ensures result is within 64-bit unsigned range

    # Step 4: Final validation - v3 must satisfy two specific properties
    # Target bit count (population count) and divisibility by a specific prime.
    TARGET_BIT_COUNT = 30
    TARGET_PRIME_DIVISOR = 9973 # A moderately large prime number

    # Calculate the number of set bits (population count) in v3
    bit_count = 0
    temp_v3 = v3
    while temp_v3 > 0:
        temp_v3 &= (temp_v3 - 1) # Brian Kernighan's algorithm for counting set bits
        bit_count += 1
    
    # Both conditions must be met for the function to return True
    return bit_count == TARGET_BIT_COUNT and v3 % TARGET_PRIME_DIVISOR == 0
0x5C68260CCEFAD00C
Proposer: gemini-2.5-flash Solver: deepseek-reasoner
-1 vs -2
#5 Sample Solution Wrong
import hashlib

def mystery(x):
    # Convert x to integer n
    if isinstance(x, str):
        try:
            if x.startswith('0x'):
                n = int(x, 16)
            else:
                n = int(x)
        except ValueError:
            return False
    elif isinstance(x, (int, float)):
        if isinstance(x, float):
            if not x.is_integer():
                return False
            n = int(x)
        else:
            n = x
    else:
        return False
    
    # Ensure n is a 64-bit unsigned integer
    if n < 0 or n >= 2**64:
        return False
    
    # Deterministic Miller-Rabin primality test for 64-bit integers
    def is_prime(m):
        if m < 2:
            return False
        small_primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]
        for p in small_primes:
            if m % p == 0:
                return m == p
        d = m - 1
        s = 0
        while d % 2 == 0:
            d //= 2
            s += 1
        for a in [2, 325, 9375, 28178, 450775, 9780504, 1795265022]:
            if a % m == 0:
                continue
            x = pow(a, d, m)
            if x == 1 or x == m - 1:
                continue
            for _ in range(s - 1):
                x = (x * x) % m
                if x == m - 1:
                    break
            else:
                return False
        return True
    
    if not is_prime(n):
        return False
    
    # n must end with the decimal digits 123
    if n % 1000 != 123:
        return False
    
    # SHA‑256 of the decimal representation must start with hex digit '0' or '1'
    h = hashlib.sha256(str(n).encode()).hexdigest()
    return h[0] in ('0', '1')
94123
Proposer: deepseek-reasoner Solver: gemini-2.5-flash
-2 vs -2
#6 Sample Solution Wrong
import datetime
import hashlib
from datetime import timezone

def mystery(x):
    """
    This function takes a value x (either string or number) and returns a boolean.
    It checks for a precise combination of numerical, temporal, and cryptographic properties.
    """
    
    # Step 1: Normalize x to an integer 'n' (interpreted as a Unix timestamp)
    n = 0
    if isinstance(x, str):
        try:
            # Accepts hexadecimal strings (e.g., '0x...') or decimal strings
            if x.startswith('0x') or x.startswith('0X'):
                n = int(x, 16)
            else:
                n = int(x)
        except ValueError:
            return False
    elif isinstance(x, (int, float)):
        # Floats are accepted only if they represent an exact integer.
        if isinstance(x, float):
            if not x.is_integer():
                return False
            n = int(x)
        else:
            n = x
    else:
        # Any other type is not accepted.
        return False

    # Ensure n is a non-negative integer and within a plausible timestamp range
    # (e.g., not extremely large or negative values that might cause datetime errors).
    # Using 2^63 - 1 as an upper bound for a typical 64-bit signed integer timestamp.
    if not isinstance(n, int) or n < 0 or n > 2**63 - 1:
        return False
    
    # Step 2: Interpret 'n' as a Unix timestamp (seconds since epoch)
    # and extract specific date/time properties using UTC to ensure consistency.
    try:
        dt_object = datetime.datetime.fromtimestamp(n, tz=timezone.utc)
    except (ValueError, OSError):
        # Timestamp might be out of valid range for datetime conversion
        return False
    
    # Condition A: The year of the timestamp must be a prime number.
    # This adds a number-theoretic constraint on the temporal aspect.
    year = dt_object.year
    if year < 2: # Prime numbers are >= 2
        return False
    # Simple primality test for the year
    for i in range(2, int(year**0.5) + 1):
        if year % i == 0:
            return False # Not prime
    # If the loop completes, the year is prime.

    # Condition B: The day of the week for the timestamp must be Tuesday.
    # (datetime.weekday() returns 0 for Monday, 1 for Tuesday, ..., 6 for Sunday).
    if dt_object.weekday() != 1:
        return False
    
    # Condition C: The month of the timestamp must be October.
    if dt_object.month != 10:
        return False
    
    # Condition D: The 13th bit (0-indexed, corresponding to 2^12) of the
    # raw timestamp 'n' must be set (i.e., its value is 1).
    # This introduces a bitwise constraint on the numerical representation.
    if not ((n >> 12) & 1):
        return False
        
    # Step 3: Compute the SHA256 hash of the decimal string representation of 'n'.
    # This is an irreversible cryptographic operation.
    n_str = str(n)
    sha256_hash = hashlib.sha256(n_str.encode('utf-8')).hexdigest()
    
    # Condition E: The SHA256 hash must start with the hexadecimal digit '0'.
    # This requires finding an 'n' whose hash falls into a specific 1/16th range,
    # making brute-force search the primary method of discovery.
    if not sha256_hash.startswith('0'):
        return False
        
    # If all above conditions are met, the function returns True.
    return True
0x6c6e7500
Proposer: gemini-2.5-flash Solver: deepseek-reasoner
-2 vs -3
#7 Solver Failed
def mystery(x):
    # Convert x to an integer n, handling strings (hex/decimal) and numbers.
    if isinstance(x, str):
        try:
            if x.startswith('0x') or x.startswith('0X'):
                n = int(x, 16)
            else:
                n = int(x)
        except ValueError:
            return False
    elif isinstance(x, (int, float)):
        if isinstance(x, float):
            if not x.is_integer():
                return False
            n = int(x)
        else:
            n = x
    else:
        return False

    # Ensure n is a 32-bit unsigned integer.
    if n < 0 or n >= 2**32:
        return False

    # Arbitrary constants chosen to obscure the linear transformation.
    C1 = 0xCAFEBABE
    C2 = 0xDEADBEEF
    C3 = 0x12345678
    C4 = 0x87654321
    C5 = 0xF0F0F0F0
    TARGET = 0xABCDEF01

    # A sequence of reversible bitwise and arithmetic operations.
    v = n ^ C1
    v = (v + C2) & 0xFFFFFFFF
    v = v ^ C3
    v = (v + C4) & 0xFFFFFFFF
    v = v ^ C5
    return v == TARGET
0x28116FA7
0x29CB7107
Proposer: deepseek-reasoner Solver: gemini-2.5-flash
-1 vs -3
#8 Sample Solution Wrong
import hashlib

# Helper for `mystery` function (not directly visible to the solver)
def _is_prime_digit(digit):
    return digit in (2, 3, 5, 7)

# Helper for `mystery` function (not directly visible to the solver)
def _check_digit_constraint(n_val):
    s_n = str(n_val)
    unique_digits = set()
    if not s_n: 
        return False # Should not happen for valid positive integers
    for char_digit in s_n:
        digit = int(char_digit)
        if not _is_prime_digit(digit):
            return False # Contains a non-prime digit
        unique_digits.add(digit)
    return len(unique_digits) == 3 # Exactly 3 unique prime digits

def mystery(x):
    """
    This function takes a value x (either string or number) and returns a boolean.
    It checks for a precise combination of numerical properties on the input,
    followed by a complex transformation, and finally a cryptographic hash check.
    """
    
    # Step 1: Normalize x to a 64-bit unsigned integer 'n'
    n = 0
    if isinstance(x, str):
        try:
            # Accepts hexadecimal strings (e.g., '0x...') or decimal strings
            if x.startswith('0x') or x.startswith('0X'):
                n = int(x, 16)
            else:
                n = int(x)
        except ValueError:
            return False
    elif isinstance(x, (int, float)):
        # Floats are accepted only if they represent an exact integer.
        if isinstance(x, float):
            if not x.is_integer():
                return False
            n = int(x)
        else:
            n = x
    else:
        # Any other type is not accepted.
        return False

    MAX_64_BIT = 0xFFFFFFFFFFFFFFFF
    # Ensure n is a non-negative integer and fits within a 64-bit unsigned integer range.
    if not isinstance(n, int) or n < 0 or n > MAX_64_BIT:
        return False

    # Constants for the transformation and the hash prefix
    C1 = 0xDEADC0DEBEEFBABE
    C2 = 0x123456789ABCDEF0
    C3 = 0xFEDCBA9876543211 # This constant is chosen to be odd for specific properties
    C4 = 0xCAFEBABEDADAF00D
    TARGET_HASH_PREFIX = "000"

    # Step 2: Constraint on the decimal digits of 'n'
    # 'n' must contain exactly 3 unique decimal digits, and each of these unique digits
    # must itself be a prime number (i.e., 2, 3, 5, or 7).
    if not _check_digit_constraint(n):
        return False

    # Step 3: Apply a complex, chained transformation to 'n'
    # This sequence of bitwise XORs, additions, and a modular multiplication
    # makes reverse engineering challenging, especially the multiplication.
    transformed_n = (n ^ C1)
    transformed_n = (transformed_n + C2) & MAX_64_BIT
    transformed_n = (transformed_n * C3) & MAX_64_BIT # Modular multiplication within 64-bit bounds
    transformed_n = (transformed_n ^ C4)

    # Step 4: Final cryptographic check
    # The SHA256 hash of the decimal string representation of 'transformed_n'
    # must start with a specific hexadecimal prefix.
    sha256_hash = hashlib.sha256(str(transformed_n).encode('utf-8')).hexdigest()
    
    return sha256_hash.startswith(TARGET_HASH_PREFIX)
235235235235235235
Proposer: gemini-2.5-flash Solver: deepseek-reasoner
-1 vs -4
#9 Solver Failed
def mystery(x):
    # Convert input to integer, accepting strings (hex/decimal) or numbers
    if isinstance(x, str):
        try:
            if x.startswith('0x') or x.startswith('0X'):
                n = int(x, 16)
            else:
                n = int(x)
        except ValueError:
            return False
    elif isinstance(x, (int, float)):
        if isinstance(x, float):
            if not x.is_integer():
                return False
            n = int(x)
        else:
            n = x
    else:
        return False

    # Ensure n is a 64-bit unsigned integer
    if n < 0 or n >= 2**64:
        return False

    # Constants (chosen to be large and patterned)
    C1 = 0x1111111111111111
    C2 = 0x2222222222222222
    C3 = 0xFFFFFFFFFFFFFFFF
    C4 = 0x4444444444444444
    C5 = 0x5555555555555555
    C6 = 0x6666666666666666
    TARGET = 0x7777777777777777

    # Sequence of reversible transformations (XOR, addition, multiplication)
    v = n
    v = v ^ C1
    v = (v + C2) & 0xFFFFFFFFFFFFFFFF
    v = (v * C3) & 0xFFFFFFFFFFFFFFFF
    v = v ^ C4
    v = (v + C5) & 0xFFFFFFFFFFFFFFFF
    v = v ^ C6
    return v == TARGET
0xF4F4F4F4F4F4F4F7
0xCCCCCCCCCCCCCCF7
Proposer: deepseek-reasoner Solver: gemini-2.5-flash
0 vs -4
#10 Sample Solution Wrong
import hashlib

def mystery(x):
    """
    This function takes a value x (either string or number) and returns a boolean.
    It checks for a precise combination of numerical properties on the input,
    followed by a complex, multi-step transformation, and finally a cryptographic hash check.
    """
    
    # Step 1: Normalize x to a 64-bit unsigned integer 'n'
    n = 0
    if isinstance(x, str):
        try:
            # Accepts hexadecimal strings (e.g., '0x...') or decimal strings
            if x.startswith('0x') or x.startswith('0X'):
                n = int(x, 16)
            else:
                n = int(x)
        except ValueError:
            return False
    elif isinstance(x, (int, float)):
        # Floats are accepted only if they represent an exact integer.
        if isinstance(x, float):
            if not x.is_integer():
                return False
            n = int(x)
        else:
            n = x
    else:
        # Any other type is not accepted.
        return False

    MAX_64_BIT = 0xFFFFFFFFFFFFFFFF
    # Ensure n is a non-negative integer and fits within a 64-bit unsigned integer range.
    if not isinstance(n, int) or n < 0 or n > MAX_64_BIT:
        return False

    # Condition A: The number of set bits (population count) in 'n' must be exactly 32.
    # This introduces a specific numerical property on the input value 'n'.
    if bin(n).count('1') != 32:
        return False

    # Constants for the transformation
    # These constants are chosen to be large, seemingly arbitrary, and specifically
    # C3 is an odd number to ensure its modular inverse exists for potential reverse engineering.
    C1 = 0xABCDEF0123456789
    C2 = 0xFEDCBA9876543210
    C3 = 0x13579BDF02468ACF # An odd constant for modular multiplication
    C4 = 0x9876543210FEDCBA
    ROT_SHIFT = 13 # A prime shift value for bit rotation

    # Step 2: Apply a complex, chained transformation to 'n'
    # This sequence of bitwise XORs, modular addition, modular multiplication,
    # and a bit rotation makes reverse engineering challenging.
    v = n

    # Transformation 1: XOR with C1
    v = v ^ C1

    # Transformation 2: Add C2 (modular 64-bit)
    v_intermediate1 = (v + C2) & MAX_64_BIT

    # Condition B: The 24th bit (0-indexed, corresponding to 2^23) of v_intermediate1 must be set.
    # This adds an intermediate bitwise constraint on the transformed value.
    if not ((v_intermediate1 >> 23) & 1):
        return False

    v = v_intermediate1

    # Transformation 3: Modular multiplication with C3 (modular 64-bit)
    # This step is particularly hard to reverse without knowledge of modular inverses
    # modulo 2^64, which requires C3 to be odd.
    v = (v * C3) & MAX_64_BIT

    # Transformation 4: Rotate left by ROT_SHIFT bits (64-bit)
    # This is a circular bit shift, adding another layer of reversible complexity.
    v = ((v << ROT_SHIFT) | (v >> (64 - ROT_SHIFT))) & MAX_64_BIT

    # Transformation 5: XOR with C4
    final_v = v ^ C4

    # Step 3: Final cryptographic check
    # The SHA256 hash of the decimal string representation of 'final_v'
    # must start with a specific hexadecimal prefix. This is an irreversible operation.
    sha256_hash = hashlib.sha256(str(final_v).encode('utf-8')).hexdigest()
    
    TARGET_HASH_PREFIX = "0000" # Requires finding a 'final_v' whose hash falls into a 1 in 65536 range.

    # All conditions must be met for the function to return True.
    return sha256_hash.startswith(TARGET_HASH_PREFIX)
11704289456743787711
Proposer: gemini-2.5-flash Solver: deepseek-reasoner
0 vs -5