← All Duels

deepseek-reasoner_vs_claude-sonnet-4-5-20250929_20260124_201844.jsonl — 10 puzzles

deepseek-reasoner
1
vs
claude-sonnet-4-5-20250929
-1
#1 Solved
def mystery(x):
    if not isinstance(x, str):
        return False
    if len(x) != 10:
        return False
    if not all('a' <= c <= 'z' for c in x):
        return False
    if x[0] != 'a':
        return False
    if x[-1] != 'z':
        return False
    if x.count('b') != 2:
        return False
    if 'c' in x:
        return False
    if sum(ord(c) for c in x) != 1000:
        return False
    return True
"abbaaaaadz"
"aaaaabbdaz"
Proposer: deepseek-reasoner Solver: claude-sonnet-4-5-20250929
0 vs 0
#2 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    if x < 10000 or x > 99999:
        return False
    
    # Check if x is a perfect square
    sqrt_x = int(x ** 0.5)
    if sqrt_x * sqrt_x != x:
        return False
    
    # Check if the square root is a palindrome
    s = str(sqrt_x)
    if s != s[::-1]:
        return False
    
    # Sum of digits of x must be divisible by 7
    digit_sum = sum(int(d) for d in str(x))
    if digit_sum % 7 != 0:
        return False
    
    # Product of digits must be greater than 100
    product = 1
    for d in str(x):
        product *= int(d)
    if product <= 100:
        return False
    
    return True
58564
58564
Proposer: claude-sonnet-4-5-20250929 Solver: deepseek-reasoner
0 vs 0
#3 Solver Failed
def mystery(x):
    if not isinstance(x, int):
        return False
    if x <= 0:
        return False
    n = 2502200483
    c = 1622007283
    return pow(x, 3, n) == c
1234567
10000
Proposer: deepseek-reasoner Solver: claude-sonnet-4-5-20250929
1 vs 0
#4 Solved
def mystery(x):
    import hashlib
    if not isinstance(x, str):
        return False
    h = hashlib.sha256(x.encode()).hexdigest()
    return h == "2c26b46b68ffc68ff99b453c1d30413413422d706483bfa0f98a5e886266e7ae"
"foo"
"foo"
Proposer: claude-sonnet-4-5-20250929 Solver: deepseek-reasoner
1 vs 0
#5 Solved
def mystery(x):
    # x must be a positive integer
    if not isinstance(x, int):
        return False
    if x <= 0:
        return False
    # Check if x satisfies the equation x^2 - 1 = 109 * y^2 for some integer y
    t = x * x - 1
    if t % 109 != 0:
        return False
    s = t // 109
    # Check if s is a perfect square
    r = int(s ** 0.5)
    return r * r == s
1
158070671986249
Proposer: deepseek-reasoner Solver: claude-sonnet-4-5-20250929
1 vs 0
#6 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    if not (100000 <= x <= 999999):
        return False
    
    # Check divisibility properties with specific remainders
    if x % 37 != 13:
        return False
    if x % 41 != 29:
        return False
    if x % 43 != 17:
        return False
    
    # Must not contain the digit 0
    if '0' in str(x):
        return False
    
    return True
171286
171286
Proposer: claude-sonnet-4-5-20250929 Solver: deepseek-reasoner
1 vs 0
#7 Solved
def mystery(x):
    # x must be an integer
    if not isinstance(x, int):
        return False
    # x must be exactly 4 digits
    if not (1000 <= x <= 9999):
        return False
    # x must be a perfect square
    r = int(x ** 0.5)
    if r * r != x:
        return False
    # sum of digits must be a perfect square
    s = sum(int(d) for d in str(x))
    if int(s ** 0.5) ** 2 != s:
        return False
    # product of digits must be a perfect cube (allow 0)
    p = 1
    for d in str(x):
        p *= int(d)
    if p != 0:
        c = int(round(p ** (1/3)))
        if c * c * c != p:
            return False
    # x must be divisible by 17
    if x % 17 != 0:
        return False
    # x must be a Harshad number (divisible by sum of its digits)
    if x % s != 0:
        return False
    # x modulo 19 must be 17
    if x % 19 != 17:
        return False
    # x in octal must not contain the digit '7'
    oct_x = oct(x)[2:]
    if '7' in oct_x:
        return False
    # x in hexadecimal must contain at least one letter
    hex_x = hex(x)[2:]
    if not any(c in 'abcdef' for c in hex_x):
        return False
    # the reverse of x must not be a perfect square
    rev = int(str(x)[::-1])
    if int(rev ** 0.5) ** 2 == rev:
        return False
    # x must not be a palindrome
    if str(x) == str(x)[::-1]:
        return False
    # all digits must be distinct
    if len(set(str(x))) != len(str(x)):
        return False
    # the number of divisors of x must be odd (true for perfect squares)
    div_count = 0
    for i in range(1, r+1):
        if x % i == 0:
            div_count += 1
            if i != x // i:
                div_count += 1
    if div_count % 2 == 0:
        return False
    return True
2601
2601
Proposer: deepseek-reasoner Solver: claude-sonnet-4-5-20250929
1 vs 0
#8 Solved
def mystery(x):
    if not isinstance(x, str):
        return False
    if len(x) != 9:
        return False
    
    # Check alternating pattern: letter, digit, letter, digit, ...
    for i in range(9):
        if i % 2 == 0:  # Even positions should be letters
            if not x[i].islower():
                return False
        else:  # Odd positions should be digits
            if not x[i].isdigit():
                return False
    
    # Extract letters and digits
    letters = ''.join(x[i] for i in range(0, 9, 2))
    digits = [int(x[i]) for i in range(1, 9, 2)]
    
    # Letters must spell a specific word
    if letters != 'prime':
        return False
    
    # Sum of digits must equal 22
    if sum(digits) != 22:
        return False
    
    return True
"p9r9i3m1e"
"p5r7i4m6e"
Proposer: claude-sonnet-4-5-20250929 Solver: deepseek-reasoner
1 vs 0
#9 Solved
def mystery(x):
    # x must be a positive integer
    if not isinstance(x, int) or x <= 0:
        return False
    
    # Compute the number of Collatz steps to reach 1
    def collatz_steps(n):
        steps = 0
        while n != 1:
            if n % 2 == 0:
                n //= 2
            else:
                n = 3 * n + 1
            steps += 1
        return steps
    
    # The puzzle: find an x for which the Collatz sequence length is exactly 1000
    return collatz_steps(x) == 1000
10715086071862673209484250490600018105614048117055336074437503883703510511249361224931983788156958581275946729175531468251871452856923140435984577574698574803934567774824230985421074605062371141877954182153046474983581941267398767559165543946077062914571196477686542167660429831652624386837205668069376
2**1000
Proposer: deepseek-reasoner Solver: claude-sonnet-4-5-20250929
1 vs 0
#10 Sample Solution Wrong
def mystery(x):
    if not isinstance(x, int):
        return False
    if x <= 0:
        return False
    n = 1000000007
    c = 169916223
    return pow(x, 3, n) == c
123456789
Proposer: claude-sonnet-4-5-20250929 Solver: deepseek-reasoner
1 vs -1