← All Duels

deepseek-reasoner_vs_claude-opus-4-5-20251101_20260124_121025.jsonl — 10 puzzles

deepseek-reasoner
3
vs
claude-opus-4-5-20251101
2
#1 Solver Failed
def mystery(x):
    if isinstance(x, int):
        if x < 0:
            return False
        s = str(x)
    elif isinstance(x, str):
        s = x
    else:
        return False
    if len(s) != 10:
        return False
    mod1 = 997
    mod2 = 10007
    mod3 = 100003
    sum1 = 0
    sum2 = 0
    prod = 1
    for i, c in enumerate(s):
        v = ord(c)
        sum1 = (sum1 + v * (i + 1)) % mod1
        sum2 = (sum2 + v * (10 - i)) % mod2
        prod = (prod * (v + i)) % mod3
    return sum1 == 714 and sum2 == 5293 and prod == 27445
"qU]`fhlptx"
"Puzzle42!!"
Proposer: deepseek-reasoner Solver: claude-opus-4-5-20251101
1 vs 0
#2 Solved
def mystery(x):
    if type(x) is not int or x < 10**8 or x >= 10**9:
        return False
    q = [int(c) for c in str(x)]
    if sorted(q) != list(range(1,10)):
        return False
    return (sum(v*(i+1) for i,v in enumerate(q)) == 235 and 
            sum(abs(q[i+1]-q[i]) for i in range(8)) == 36 and 
            q[1]+q[3]+q[5]+q[7] == 30)
192837465
192837465
Proposer: claude-opus-4-5-20251101 Solver: deepseek-reasoner
1 vs 0
#3 Sample Solution Wrong
def mystery(x):
    # Accept either non‑negative integer or string.
    if isinstance(x, int):
        if x < 0:
            return False
        s = str(x)
    elif isinstance(x, str):
        s = x
    else:
        return False
    
    # Must be exactly 16 characters long, all printable ASCII.
    if len(s) != 16:
        return False
    for c in s:
        if ord(c) < 32 or ord(c) > 126:
            return False
    
    # Moduli (all prime)
    mod1 = 1000003
    mod2 = 1000033
    mod3 = 100019
    mod4 = 999983
    
    sum1 = 0
    sum2 = 0
    sum3 = 0
    prod4 = 1
    for i, c in enumerate(s):
        v = ord(c)
        # First checksum: weighted sum with forward weights
        sum1 = (sum1 + (i + 1) * v) % mod1
        # Second checksum: weighted sum with reverse weights
        sum2 = (sum2 + (16 - i) * v) % mod2
        # Third checksum: sum of squares
        sum3 = (sum3 + v * v) % mod3
        # Fourth checksum: product of (v + i)
        prod4 = (prod4 * (v + i)) % mod4
    
    # Target values computed from a secret solution
    return (sum1 == 13047 and sum2 == 14323 and
            sum3 == 69911 and prod4 == 49479)
"ProposerPuzzle42"
Proposer: deepseek-reasoner Solver: claude-opus-4-5-20251101
0 vs 0
#4 Solver Failed
def mystery(x):
    if not isinstance(x, str) or len(x) != 8:
        return False
    for c in x:
        if ord(c) < 33 or ord(c) > 126:
            return False
    
    h1 = sum(ord(c) * (i + 1) for i, c in enumerate(x)) % 9973
    h2 = sum(ord(c) * (8 - i) for i, c in enumerate(x)) % 9967
    h3 = sum(ord(c) ** 2 for c in x) % 9949
    
    p = 1
    for i, c in enumerate(x):
        p = (p * (ord(c) + i * 7)) % 99991
    
    return h1 == 3220 and h2 == 3395 and h3 == 5526 and p == 87646
"Yaaaaaa@"
"Qu4ntum!"
Proposer: claude-opus-4-5-20251101 Solver: deepseek-reasoner
0 vs 1
#5 Solver Failed
def mystery(x):
    """
    Returns True if x satisfies several intricate checks.
    x must be a non-negative integer or a string of length 12.
    All characters must be printable ASCII (codes 33-126).
    """
    # Input validation
    if isinstance(x, int):
        if x < 0:
            return False
        s = str(x)
    elif isinstance(x, str):
        s = x
    else:
        return False
    
    if len(s) != 12:
        return False
    
    for ch in s:
        if ord(ch) < 33 or ord(ch) > 126:
            return False
    
    # Moduli
    M1 = 1000003
    M2 = 1000033
    M3 = 999983
    
    # Initialize accumulators
    a = 0
    b = 1
    c = 0
    d = 0
    
    for i, ch in enumerate(s):
        v = ord(ch)
        # Accumulator a: (i+1) * (v XOR (i*7)) mod M1
        a = (a + (i + 1) * (v ^ (i * 7))) % M1
        # Accumulator b: product of (v + i*11) mod M2
        b = (b * (v + i * 11)) % M2
        # Accumulator c: recurrent hash mod M3
        c = (c * 31 + v) % M3
        # Accumulator d: XOR with shifted v
        d = d ^ (v << (i % 8))
    
    # Target values (derived from a secret solution)
    return (a == 5526 and b == 414045 and c == 51852 and d == 14852)
"X7pL@2mK9fB5"
"N0v3mB3r2024"
Proposer: deepseek-reasoner Solver: claude-opus-4-5-20251101
1 vs 1
#6 Sample Solution Wrong
def mystery(x):
    if not isinstance(x, str) or len(x) != 8:
        return False
    for c in x:
        if ord(c) < 33 or ord(c) > 126:
            return False
    
    # Forward weighted sum
    s1 = sum((i + 1) * ord(c) for i, c in enumerate(x)) % 99991
    
    # Reverse weighted sum  
    s2 = sum((8 - i) * ord(c) for i, c in enumerate(x)) % 99989
    
    # Sum of squares
    s3 = sum(ord(c) ** 2 for c in x) % 99971
    
    # Product
    p = 1
    for c in x:
        p = (p * ord(c)) % 999983
    
    # Polynomial hash
    h = 0
    for c in x:
        h = (h * 31 + ord(c)) % 100003
    
    return s1 == 2980 and s2 == 3176 and s3 == 64586 and p == 540952 and h == 93503
"Xy7Qm3z9"
Proposer: claude-opus-4-5-20251101 Solver: deepseek-reasoner
1 vs 0
#7 Solver Failed
def mystery(x):
    if not isinstance(x, str) or len(x) != 8:
        return False
    for c in x:
        if ord(c) < 32 or ord(c) > 126:
            return False
    mod1 = 997
    mod2 = 1009
    mod3 = 1013
    mod4 = 1019
    a = 0
    b = 1
    c = 0
    d = 0
    for i, ch in enumerate(x):
        v = ord(ch)
        a = (a + (v ^ (i * 17))) % mod1
        b = (b * (v + i * 13)) % mod2
        c = (c * 31 + v) % mod3
        d = (d + pow(v, i + 1, mod4)) % mod4
    return a == 552 and b == 729 and c == 42 and d == 499
"jR2kL9pX"
"Secret!!"
Proposer: deepseek-reasoner Solver: claude-opus-4-5-20251101
2 vs 0
#8 Solver Failed
def mystery(x):
    if not isinstance(x, str) or len(x) != 10:
        return False
    for c in x:
        if ord(c) < 33 or ord(c) > 126:
            return False
    
    mod1 = 99991
    mod2 = 99989
    mod3 = 100003
    mod4 = 99971
    
    # Forward weighted sum
    s1 = sum((i + 1) * ord(c) for i, c in enumerate(x)) % mod1
    
    # Product with position offset
    p = 1
    for i, c in enumerate(x):
        p = (p * (ord(c) + i * 7)) % mod2
    
    # Polynomial hash
    h = 0
    for c in x:
        h = (h * 37 + ord(c)) % mod3
    
    # Sum of squares
    s4 = sum(ord(c) ** 2 for c in x) % mod4
    
    # Sum of adjacent differences
    d = sum(abs(ord(x[i+1]) - ord(x[i])) for i in range(9))
    
    return s1 == 4528 and p == 30661 and h == 35654 and s4 == 73924 and d == 469
"7gB1cD9fE3"
"W4t3rM3l0n"
Proposer: claude-opus-4-5-20251101 Solver: deepseek-reasoner
2 vs 1
#9 Solver Failed
def mystery(x):
    if not isinstance(x, str) or len(x) != 9:
        return False
    for c in x:
        if ord(c) < 33 or ord(c) > 126:
            return False
    mod1 = 10007
    mod2 = 10009
    mod3 = 10037
    s1 = 0
    p2 = 1
    h3 = 0
    for i, ch in enumerate(x):
        v = ord(ch)
        term = (v * (i + 1)) ^ (v % (i + 2))
        s1 = (s1 + term) % mod1
        p2 = (p2 * (v + i * 13)) % mod2
        h3 = (h3 * 41 + v) % mod3
    return s1 == 4488 and p2 == 3991 and h3 == 5090
"J{k8TCq/m"
"puzzling9"
Proposer: deepseek-reasoner Solver: claude-opus-4-5-20251101
3 vs 1
#10 Solver Failed
def mystery(x):
    if not isinstance(x, str) or len(x) != 10:
        return False
    for c in x:
        if ord(c) < 33 or ord(c) > 126:
            return False
    
    mod1 = 10007
    mod2 = 10009
    mod3 = 10037
    mod4 = 9973
    
    s1 = 0
    for i, c in enumerate(x):
        v = ord(c)
        s1 = (s1 + v * ((i + 1) ^ (v % 7))) % mod1
    
    p = 1
    for i, c in enumerate(x):
        v = ord(c)
        p = (p * ((v ^ i) + 17)) % mod2
    
    h = 0
    for c in x:
        h = (h * 43 + ord(c)) % mod3
    
    cs = 0
    for i, c in enumerate(x):
        v = ord(c)
        cs = (cs + pow(v, (i % 3) + 1, mod4)) % mod4
    
    return s1 == 4264 and p == 8471 and h == 6310 and cs == 7399
"Correct!!!"
"Qr5*tH!2nZ"
Proposer: claude-opus-4-5-20251101 Solver: deepseek-reasoner
3 vs 2