def mystery(x):
s = str(x)
ascii_sum = sum(ord(c) for c in s)
sqrt = int(ascii_sum ** 0.5)
return sqrt * sqrt == ascii_sum
def mystery(x):
s = str(x)
if len(s) != 6:
return False
v1 = 2 ** 7 - 13
v2 = 2 ** 6 + 37
v3 = 3 ** 5 - (12 ** 2)
v4 = 2 ** 7 - 14
v5 = v2
v6 = 2 ** 7 - 12
if ord(s[0]) != v1: return False
if ord(s[1]) != v2: return False
if ord(s[2]) != v3: return False
if ord(s[3]) != v4: return False
if ord(s[4]) != v5: return False
if ord(s[5]) != v6: return False
z = sum(ord(c) for c in s) # red herring
if z % 2 != 0: return False # but sum of secret: 115+101+99+114+101+116= let's calc 115+116=231,101+101=202,99+114=213, total 231+202=433+213=646, even, so ok
return True
def mystery(x):
s = str(x)
# Must be numeric
try:
n = int(s)
except:
return False
if n < 10:
return False
# Check digit properties
digits = [int(d) for d in s]
# Must have even number of digits
if len(digits) % 2 != 0:
return False
# Sum of first half must equal sum of second half
mid = len(digits) // 2
first_half = sum(digits[:mid])
second_half = sum(digits[mid:])
if first_half != second_half:
return False
# The number must be divisible by its digit sum
digit_sum = sum(digits)
if digit_sum == 0 or n % digit_sum != 0:
return False
return True
def mystery(x):
s = str(x)
if len(s) != 9:
return False
v0 = 2**6 + 2**5 + 2**4 - 4
v1 = 2**6 + 2**5 + 1
v2 = v1 + 1
v3 = 11**2
v4 = 2**7 - 14
v5 = v3 - 16
v6 = v5 + 5
v7 = v6 + 6
v8 = v0 - 4
if ord(s[0]) != v0: return False
if ord(s[1]) != v1: return False
if ord(s[2]) != v2: return False
if ord(s[3]) != v3: return False
if ord(s[4]) != v4: return False
if ord(s[5]) != v5: return False
if ord(s[6]) != v6: return False
if ord(s[7]) != v7: return False
if ord(s[8]) != v8: return False
z = sum(ord(c) for c in s)
if z % 2 == 0: return False
return True
def mystery(x):
s = str(x)
# Must be exactly 4 characters
if len(s) != 4:
return False
# Calculate differences between consecutive ASCII values
diffs = []
for i in range(len(s) - 1):
diffs.append(ord(s[i+1]) - ord(s[i]))
# All differences must be the same (arithmetic sequence)
if len(set(diffs)) != 1:
return False
# The common difference must be positive
if diffs[0] <= 0:
return False
return True
def mystery(x):
s = str(x)
if len(s) != 11:
return False
v11 = (2**6 // 2**2) - 6
v10 = v11 + (2**6 + 2**5 + 2**2)
v9 = v10 + (1**100)
v8 = v9 - (3**2 - 3)
v7 = v8 + (2**3 + 3)
v6 = v7 - (2**4 + 3)
v5 = v6 + (2**1)
v4 = v5 + (4**2)
v3 = v4 + (1 + 1)
v2 = v3 - (3 * 5)
v1 = v2 - (2**2)
v0 = v1 + (2**3 + 2**2 + 1)
if ord(s[0]) != v0: return False
if ord(s[1]) != v1: return False
if ord(s[2]) != v2: return False
if ord(s[3]) != v3: return False
if ord(s[4]) != v4: return False
if ord(s[5]) != v5: return False
if ord(s[6]) != v6: return False
if ord(s[7]) != v7: return False
if ord(s[8]) != v8: return False
if ord(s[9]) != v9: return False
if ord(s[10]) != v10: return False
z = sum(ord(c) for c in s)
if z % 2 == 0: return False
return True
def mystery(x):
s = str(x)
# Must be exactly 3 characters
if len(s) != 3:
return False
# Convert each to ASCII
a, b, c = ord(s[0]), ord(s[1]), ord(s[2])
# Check hidden pattern
return a*a + b*b == c*c
def mystery(x):
s = str(x)
if len(s) != 13:
return False
v12 = 2**6 + 2**5 + 2**2 + (0**10) * 999
v11 = v12 + ((2**10) // (2**10 - 1**999))
v10 = v11 + ((2**2)**2 + (1**100 - 2**1))
v9 = v10 - 2**0
v8 = v9 - ((3**4 // 3**2) * (2**3 // 2**2))
v7 = v8 + (3**2 - 3**1)
v6 = v7 + (2**2 + 3**2 - 2**1)
v5 = v6 - (2**4 - 3**1)
v4 = v5 - (4**1 - 1**1)
v3 = v4 + (10**5 - 10**5)
v2 = v3 - (1**10)
v1 = v2 + (2**3 + 3**1 + (1**1000 - 1**999))
v0 = v1 - (3**2 - 3**1 + (2**10 - 2**10))
if ord(s[0]) != v0: return False
if ord(s[1]) != v1: return False
if ord(s[2]) != v2: return False
if ord(s[3]) != v3: return False
if ord(s[4]) != v4: return False
if ord(s[5]) != v5: return False
if ord(s[6]) != v6: return False
if ord(s[7]) != v7: return False
if ord(s[8]) != v8: return False
if ord(s[9]) != v9: return False
if ord(s[10]) != v10: return False
if ord(s[11]) != v11: return False
if ord(s[12]) != v12: return False
z = sum(ord(c) for c in s)
if z % 2 != 0: return False
return True
def mystery(x):
s = str(x)
# Must be numeric
try:
n = int(s)
except:
return False
if n < 10:
return False
# Check a special property of the digits
digits = [int(d) for d in s]
power = len(digits)
total = sum(d ** power for d in digits)
return total == n
def mystery(x):
s = str(x)
if len(s) != 16:
return False
v15 = 2**6 + 6**2 + 1**999
v14 = v15 + (3**2 + 2**3)
v13 = v14 - (2**3 + 2**2 + 2**0)
v12 = v13 + (3**2 + 2**1)
v11 = v12 - (2**2 * 3 - 1**5)
v10 = v11 + ((2**2 + 2**1) * 2)
v9 = v10 - (3**1 - 2**1)
v8 = v9 - (2**2 + 2**1 + 0**1)
v7 = v8 - (2**2 + 1 + 0*999)
v6 = v7 + (3**2 + 0**5)
v5 = v6 - ((2**2 + 3**1) * 2 - 1)
v4 = v5 + (3**2 + 2**2 + 2**1)
v3 = v4 - (2**1 * 3**1)
v2 = v3 + (2**2 + 2**1 + 2**0)
v1 = v2 - (2**2 + 2**1)
v0 = v1 - (2**3 + 2**2 + 0*999)
if ord(s[0]) != v0: return False
if ord(s[1]) != v1: return False
if ord(s[2]) != v2: return False
if ord(s[3]) != v3: return False
if ord(s[4]) != v4: return False
if ord(s[5]) != v5: return False
if ord(s[6]) != v6: return False
if ord(s[7]) != v7: return False
if ord(s[8]) != v8: return False
if ord(s[9]) != v9: return False
if ord(s[10]) != v10: return False
if ord(s[11]) != v11: return False
if ord(s[12]) != v12: return False
if ord(s[13]) != v13: return False
if ord(s[14]) != v14: return False
if ord(s[15]) != v15: return False
z = sum(ord(c) for c in s)
if z % 2 == 0: return False
return True