← All Duels

claude-sonnet-4-5-20250929_vs_gpt-5.2-pro-2025-12-11_20260125_035451.jsonl — 10 puzzles

claude-sonnet-4-5-20250929
-2
vs
gpt-5.2-pro-2025-12-11
5
#1 Solved
def mystery(x):
    if not isinstance(x, int):
        return False
    if x < 0:
        return False
    digits = [int(d) for d in str(x)]
    return (sum(digits) == 15 and 
            len(digits) == 3 and
            x % 13 == 7 and
            all(d % 2 == 1 for d in digits))
735
735
Proposer: claude-sonnet-4-5-20250929 Solver: gpt-5.2-pro-2025-12-11
0 vs 0
#2 Solver Failed
def mystery(x):
    # The function is total: it should never raise, only return True/False.
    try:
        if type(x) is not str:
            return False
        b = x.encode("utf-8")
    except Exception:
        return False

    n = 12
    if len(b) != n:
        return False
    # constrain the search space a bit, but still looks like a generic "validation" check
    if any((c < 32 or c > 126) for c in b):
        return False

    # opaque target "signature"
    goal = (85, 140, 135, 95, 65, 100, 24, 59, 94, 105, 137, 199)

    def _mask(i):
        return (73 * i + 41) & 255

    def _add(i):
        return (i * i + 11) & 255

    out = []
    prev = 0
    for i, byte in enumerate(b):
        t = ((byte ^ _mask(i)) + _add(i)) & 255
        if i:
            t ^= ((prev * 17 + 29) & 255)
        out.append(t)
        prev = t

    # extra non-obvious consistency check
    if ((sum(out) ^ ((out[0] << 1) & 255) ^ out[-1]) & 255) != 187:
        return False

    return tuple(out) == goal
"c0t3_puzzl3!"
"c0d3_puzzl3!"
Proposer: gpt-5.2-pro-2025-12-11 Solver: claude-sonnet-4-5-20250929
0 vs 1
#3 Solved
def mystery(x):
    if not isinstance(x, str):
        return False
    
    if len(x) != 9:
        return False
    
    if not all(c.islower() and c.isalpha() for c in x):
        return False
    
    values = [ord(c) - ord('a') for c in x]
    
    if sum(values) != 105:
        return False
    
    weighted = sum(v * (i + 1) for i, v in enumerate(values))
    if weighted % 73 != 15:
        return False
    
    xor_val = 0
    for v in values:
        xor_val ^= v
    if xor_val != 15:
        return False
    
    prod = 1
    for i in range(0, 9, 2):
        prod = (prod * (values[i] + 1)) % 997
    if prod != 594:
        return False
    
    return True
"btascwizk"
"trickiest"
Proposer: claude-sonnet-4-5-20250929 Solver: gpt-5.2-pro-2025-12-11
0 vs 1
#4 Solver Failed
def mystery(x):
    # Total function: never raise.
    try:
        if type(x) is not str:
            return False
        b = x.encode("utf-8")
    except Exception:
        return False

    n = 20
    if len(b) != n:
        return False

    # Keep the search space "reasonable", but still big.
    if any(c < 33 or c > 126 for c in b):  # printable ASCII excluding space
        return False

    goal = (
        72, 240, 205, 101, 16, 27, 0, 4, 7, 222,
        33, 149, 32, 174, 28, 214, 109, 178, 254, 28
    )

    seed = 137
    out = []
    for i, p in enumerate(b):
        # keystream
        seed = (seed * 73 + 41) & 255
        k = seed ^ ((i * 19 + 7) & 255)

        # reversible per-byte mixing (but looks "hash-like")
        add = (k * 3 + i * 5) & 255
        mask = (i * 11 + 93) & 255

        t = (p ^ k)
        t = (t + add) & 255
        t ^= mask
        out.append(t)

    # Extra consistency check (redundant, but obscures intent)
    chk = ((sum(out) * 17 + (out[3] ^ out[7]) + out[11]) & 255)
    if chk != 243:
        return False

    return tuple(out) == goal
"c1phs2/).k<\xa8\xf7\x87\xfb\xeb\x04\xe7!\x81"
'c1ph3r_in_th3_cod3!!'
Proposer: gpt-5.2-pro-2025-12-11 Solver: claude-sonnet-4-5-20250929
0 vs 2
#5 Solved
def mystery(x):
    if not isinstance(x, str):
        return False
    
    if len(x) != 5:
        return False
    
    vals = [ord(c) for c in x]
    
    # Must be uppercase letters only
    if any(v < 65 or v > 90 for v in vals):
        return False
    
    # Sum of ASCII values
    if sum(vals) != 372:
        return False
    
    # Product of first and last character (mod 100)
    if (vals[0] * vals[4]) % 100 != 88:
        return False
    
    # Sum of second and fourth characters
    if (vals[1] + vals[3]) != 145:
        return False
    
    # Middle character constraint
    if vals[2] != 76:
        return False
    
    return True
"HALPO"
"HELLO"
Proposer: claude-sonnet-4-5-20250929 Solver: gpt-5.2-pro-2025-12-11
0 vs 2
#6 Solver Failed
def mystery(x):
    # Total function: never raise, only return True/False.
    try:
        import math, struct
    except Exception:
        return False

    try:
        if type(x) is not float:
            return False
        if not math.isnan(x):
            return False

        u = int.from_bytes(struct.pack(">d", x), "big")  # IEEE754 bits
    except Exception:
        return False

    # Must be a (quiet) NaN in IEEE754 binary64, and not negative.
    sign = (u >> 63) & 1
    exp = (u >> 52) & 0x7FF
    mant = u & ((1 << 52) - 1)
    if sign != 0 or exp != 0x7FF or mant == 0:
        return False
    if ((mant >> 51) & 1) != 1:  # quiet NaN bit
        return False

    b = u.to_bytes(8, "big")

    def _rotl8(v, r):
        v &= 0xFF
        r &= 7
        return ((v << r) | (v >> (8 - r))) & 0xFF

    # Opaque, but actually reversible, byte-mixer.
    state = 0x6D
    out = []
    for i, byte in enumerate(b):
        state = (state * 73 + 19 + i) & 0xFF
        t = byte ^ state
        t = (t + ((state << 1) & 0xFF)) & 0xFF
        t = _rotl8(t, 3)
        out.append(t)
        state ^= t

    goal = b"\x3d\x50\xcf\x46\xfb\x85\x13\x3f"
    return bytes(out) == goal
__import__('struct').unpack('>d', b'\x7f\xf9\x23\x45\x67\x89\xab\x3d')[0]
__import__("struct").unpack(">d", bytes.fromhex("7ff923456789abcd"))[0]
Proposer: gpt-5.2-pro-2025-12-11 Solver: claude-sonnet-4-5-20250929
0 vs 3
#7 Sample Solution Wrong
def mystery(x):
    try:
        if type(x) is not str:
            return False
        b = x.encode("utf-8")
    except Exception:
        return False
    
    n = 10
    if len(b) != n:
        return False
    
    # Printable ASCII only
    if any(c < 33 or c > 126 for c in b):
        return False
    
    # Target signature
    goal = (164, 180, 135, 123, 72, 59, 4, 189, 90, 1)
    
    # Complex transformation with state
    out = []
    state = 42
    for i, byte in enumerate(b):
        # Update state based on current byte and position
        state = ((state * 137) + (byte * 19) + i * 7) & 255
        
        # Transform byte through multiple operations
        t = byte
        t = (t ^ state) & 255
        t = ((t * 73) + (i * 11)) & 255
        t = (t ^ (state >> 2)) & 255
        
        # Mix with previous output (creates dependencies)
        if i > 0:
            t = (t ^ (out[i-1] * 3)) & 255
        
        out.append(t)
    
    # Additional consistency check
    if (sum(out) & 255) != 249:
        return False
    
    return tuple(out) == goal
"CodePuzzle"
Proposer: claude-sonnet-4-5-20250929 Solver: gpt-5.2-pro-2025-12-11
-1 vs 3
#8 Solver Failed
def mystery(x):
    # Total function: never raise.
    try:
        import math, struct
    except Exception:
        return False

    try:
        if type(x) is not float:
            return False
        if not math.isnan(x):
            return False

        u = int.from_bytes(struct.pack(">d", x), "big")  # IEEE754 binary64 bits
    except Exception:
        return False

    # IEEE754 NaN constraints (quiet, non-negative)
    sign = (u >> 63) & 1
    exp = (u >> 52) & 0x7FF
    mant = u & ((1 << 52) - 1)

    if sign != 0 or exp != 0x7FF or mant == 0:
        return False
    if ((mant >> 51) & 1) != 1:  # quiet-NaN bit
        return False

    # A couple of payload-shape constraints (red herrings unless you inspect the bits)
    if (mant & 0xFFF) != 0xABC:
        return False
    if ((mant >> 48) & 0xF) != 0x8:
        return False

    b = u.to_bytes(8, "big")

    def _rotl8(v, r):
        v &= 0xFF
        r &= 7
        return ((v << r) | (v >> (8 - r))) & 0xFF

    # Opaque-looking 8-byte mixer with state feedback
    out = []
    state = 0xA7
    for i, byte in enumerate(b):
        state = (state + (i * 31) + 0x55) & 0xFF
        k = (state ^ (state >> 3) ^ ((state << 5) & 0xFF)) & 0xFF

        t = byte ^ k
        t = (t + ((k * 13 + i * 7) & 0xFF)) & 0xFF
        t = _rotl8(t, (i % 7) + 1)
        t ^= (0xC3 ^ ((i * 17) & 0xFF))

        out.append(t)
        state ^= t

    # Redundant consistency check (just to add noise)
    chk = (sum(out) + ((out[2] << 1) & 0xFF) + out[5]) & 0xFF
    if chk != 0xEE:
        return False

    goal = b"\x85\x2c\xe0\xa5\xd0\x6b\xf0\x62"
    return bytes(out) == goal
struct.unpack('>d', b'\x7F\xF8\x00\x00\x00\x00\x0A\xBC')[0]
__import__("struct").unpack(">d", bytes.fromhex("7ff8123456789abc"))[0]
Proposer: gpt-5.2-pro-2025-12-11 Solver: claude-sonnet-4-5-20250929
-1 vs 4
#9 Sample Solution Wrong
def mystery(x):
    try:
        if type(x) is not str:
            return False
        b = x.encode("utf-8")
    except Exception:
        return False
    
    n = 7
    if len(b) != n:
        return False
    
    # Printable ASCII excluding space
    if any(c < 33 or c > 126 for c in b):
        return False
    
    out = []
    state = 0x3D
    for i, byte in enumerate(b):
        # Evolving state based on position
        state = (state * 53 + i * 17 + 29) & 255
        
        # Complex byte transformation
        t = (byte ^ state) & 255
        t = (t + ((i * 23 + 11) & 255)) & 255
        
        # Dependency on previous output
        if i > 0:
            t ^= (out[i-1] >> 1)
        
        out.append(t)
    
    goal = (1, 51, 145, 27, 143, 146, 116)
    
    # Extra consistency check
    if (sum(out) ^ (out[0] * 3) ^ out[-1]) & 255 != 6:
        return False
    
    return tuple(out) == goal
"Hello!!"
Proposer: claude-sonnet-4-5-20250929 Solver: gpt-5.2-pro-2025-12-11
-2 vs 4
#10 Solver Failed
def mystery(x):
    # Total function: never raise.
    try:
        if type(x) is not int:
            return False
        if x < 0 or x >= (1 << 64):
            return False

        # Require x to be a specific IEEE-754 quiet-NaN bit-pattern (but we never unpack to float).
        sign = (x >> 63) & 1
        exp = (x >> 52) & 0x7FF
        mant = x & ((1 << 52) - 1)
        if sign != 0 or exp != 0x7FF or mant == 0:
            return False
        if ((mant >> 51) & 1) != 1:  # quiet-NaN bit
            return False

        # --- Hidden target construction (obfuscated 8-byte decode) ---
        enc = (0x85, 0xEA, 0xA9, 0xFE, 0x18, 0x5A, 0xDB, 0x89)

        state = 0xA7
        tgt = []
        for i, c in enumerate(enc):
            state = (state * 73 + 41 + i * 17) & 0xFF
            ks = (state ^ (state >> 2) ^ ((state << 5) & 0xFF)) & 0xFF
            tgt.append((c ^ ks) & 0xFF)

        target_u = int.from_bytes(bytes(tgt), "big")  # 64-bit integer

        # --- 64-bit permutation (Feistel network) ---
        M32 = (1 << 32) - 1
        M64 = (1 << 64) - 1

        def rotl32(v, r):
            r &= 31
            v &= M32
            return ((v << r) | (v >> (32 - r))) & M32

        # key schedule (looks arbitrary, but deterministic)
        keys = []
        k = 0xC3A5C85C
        for i in range(10):
            k = (k + 0x9E3779B9 + (i * 0x7F4A7C15)) & M32
            k ^= rotl32(k, (i * 3 + 7) & 31)
            keys.append(k)

        def f(r, k):
            r &= M32
            t = (r + k + 0x9E3779B9) & M32
            t ^= rotl32(r, (k >> 27) & 31)
            t = (t * 0x85EBCA6B) & M32
            t ^= (t >> 13)
            return t & M32

        def perm64(u):
            u &= M64
            L = (u >> 32) & M32
            R = u & M32
            for k in keys:
                L, R = R, (L ^ f(R, k)) & M32
            return ((L << 32) | R) & M64

        # Whitening (prevents "just compare to target_u" patterns)
        C = 0xD1B54A32D192ED03

        # Additional "noise" constraint derived from the hidden target (doesn't reveal it directly).
        # This is redundant if you fully reverse, but adds friction to guessing.
        if (x ^ (x >> 1) ^ (x >> 3) ^ (x >> 7)) & 0xFFFF != (
            (target_u ^ (target_u >> 1) ^ (target_u >> 3) ^ (target_u >> 7)) & 0xFFFF
        ):
            return False

        return perm64(x ^ C) == perm64(target_u ^ C)
    except Exception:
        return False
9221137505818443784
0x7FF813579BDF2468
Proposer: gpt-5.2-pro-2025-12-11 Solver: claude-sonnet-4-5-20250929
-2 vs 5