def mystery(x):
if not isinstance(x, int):
return False
if x < 0:
return False
digits = [int(d) for d in str(x)]
return (sum(digits) == 15 and
len(digits) == 3 and
x % 13 == 7 and
all(d % 2 == 1 for d in digits))
def mystery(x):
# The function is total: it should never raise, only return True/False.
try:
if type(x) is not str:
return False
b = x.encode("utf-8")
except Exception:
return False
n = 12
if len(b) != n:
return False
# constrain the search space a bit, but still looks like a generic "validation" check
if any((c < 32 or c > 126) for c in b):
return False
# opaque target "signature"
goal = (85, 140, 135, 95, 65, 100, 24, 59, 94, 105, 137, 199)
def _mask(i):
return (73 * i + 41) & 255
def _add(i):
return (i * i + 11) & 255
out = []
prev = 0
for i, byte in enumerate(b):
t = ((byte ^ _mask(i)) + _add(i)) & 255
if i:
t ^= ((prev * 17 + 29) & 255)
out.append(t)
prev = t
# extra non-obvious consistency check
if ((sum(out) ^ ((out[0] << 1) & 255) ^ out[-1]) & 255) != 187:
return False
return tuple(out) == goal
def mystery(x):
if not isinstance(x, str):
return False
if len(x) != 9:
return False
if not all(c.islower() and c.isalpha() for c in x):
return False
values = [ord(c) - ord('a') for c in x]
if sum(values) != 105:
return False
weighted = sum(v * (i + 1) for i, v in enumerate(values))
if weighted % 73 != 15:
return False
xor_val = 0
for v in values:
xor_val ^= v
if xor_val != 15:
return False
prod = 1
for i in range(0, 9, 2):
prod = (prod * (values[i] + 1)) % 997
if prod != 594:
return False
return True
def mystery(x):
# Total function: never raise.
try:
if type(x) is not str:
return False
b = x.encode("utf-8")
except Exception:
return False
n = 20
if len(b) != n:
return False
# Keep the search space "reasonable", but still big.
if any(c < 33 or c > 126 for c in b): # printable ASCII excluding space
return False
goal = (
72, 240, 205, 101, 16, 27, 0, 4, 7, 222,
33, 149, 32, 174, 28, 214, 109, 178, 254, 28
)
seed = 137
out = []
for i, p in enumerate(b):
# keystream
seed = (seed * 73 + 41) & 255
k = seed ^ ((i * 19 + 7) & 255)
# reversible per-byte mixing (but looks "hash-like")
add = (k * 3 + i * 5) & 255
mask = (i * 11 + 93) & 255
t = (p ^ k)
t = (t + add) & 255
t ^= mask
out.append(t)
# Extra consistency check (redundant, but obscures intent)
chk = ((sum(out) * 17 + (out[3] ^ out[7]) + out[11]) & 255)
if chk != 243:
return False
return tuple(out) == goal
def mystery(x):
if not isinstance(x, str):
return False
if len(x) != 5:
return False
vals = [ord(c) for c in x]
# Must be uppercase letters only
if any(v < 65 or v > 90 for v in vals):
return False
# Sum of ASCII values
if sum(vals) != 372:
return False
# Product of first and last character (mod 100)
if (vals[0] * vals[4]) % 100 != 88:
return False
# Sum of second and fourth characters
if (vals[1] + vals[3]) != 145:
return False
# Middle character constraint
if vals[2] != 76:
return False
return True
def mystery(x):
# Total function: never raise, only return True/False.
try:
import math, struct
except Exception:
return False
try:
if type(x) is not float:
return False
if not math.isnan(x):
return False
u = int.from_bytes(struct.pack(">d", x), "big") # IEEE754 bits
except Exception:
return False
# Must be a (quiet) NaN in IEEE754 binary64, and not negative.
sign = (u >> 63) & 1
exp = (u >> 52) & 0x7FF
mant = u & ((1 << 52) - 1)
if sign != 0 or exp != 0x7FF or mant == 0:
return False
if ((mant >> 51) & 1) != 1: # quiet NaN bit
return False
b = u.to_bytes(8, "big")
def _rotl8(v, r):
v &= 0xFF
r &= 7
return ((v << r) | (v >> (8 - r))) & 0xFF
# Opaque, but actually reversible, byte-mixer.
state = 0x6D
out = []
for i, byte in enumerate(b):
state = (state * 73 + 19 + i) & 0xFF
t = byte ^ state
t = (t + ((state << 1) & 0xFF)) & 0xFF
t = _rotl8(t, 3)
out.append(t)
state ^= t
goal = b"\x3d\x50\xcf\x46\xfb\x85\x13\x3f"
return bytes(out) == goal
def mystery(x):
try:
if type(x) is not str:
return False
b = x.encode("utf-8")
except Exception:
return False
n = 10
if len(b) != n:
return False
# Printable ASCII only
if any(c < 33 or c > 126 for c in b):
return False
# Target signature
goal = (164, 180, 135, 123, 72, 59, 4, 189, 90, 1)
# Complex transformation with state
out = []
state = 42
for i, byte in enumerate(b):
# Update state based on current byte and position
state = ((state * 137) + (byte * 19) + i * 7) & 255
# Transform byte through multiple operations
t = byte
t = (t ^ state) & 255
t = ((t * 73) + (i * 11)) & 255
t = (t ^ (state >> 2)) & 255
# Mix with previous output (creates dependencies)
if i > 0:
t = (t ^ (out[i-1] * 3)) & 255
out.append(t)
# Additional consistency check
if (sum(out) & 255) != 249:
return False
return tuple(out) == goal
def mystery(x):
# Total function: never raise.
try:
import math, struct
except Exception:
return False
try:
if type(x) is not float:
return False
if not math.isnan(x):
return False
u = int.from_bytes(struct.pack(">d", x), "big") # IEEE754 binary64 bits
except Exception:
return False
# IEEE754 NaN constraints (quiet, non-negative)
sign = (u >> 63) & 1
exp = (u >> 52) & 0x7FF
mant = u & ((1 << 52) - 1)
if sign != 0 or exp != 0x7FF or mant == 0:
return False
if ((mant >> 51) & 1) != 1: # quiet-NaN bit
return False
# A couple of payload-shape constraints (red herrings unless you inspect the bits)
if (mant & 0xFFF) != 0xABC:
return False
if ((mant >> 48) & 0xF) != 0x8:
return False
b = u.to_bytes(8, "big")
def _rotl8(v, r):
v &= 0xFF
r &= 7
return ((v << r) | (v >> (8 - r))) & 0xFF
# Opaque-looking 8-byte mixer with state feedback
out = []
state = 0xA7
for i, byte in enumerate(b):
state = (state + (i * 31) + 0x55) & 0xFF
k = (state ^ (state >> 3) ^ ((state << 5) & 0xFF)) & 0xFF
t = byte ^ k
t = (t + ((k * 13 + i * 7) & 0xFF)) & 0xFF
t = _rotl8(t, (i % 7) + 1)
t ^= (0xC3 ^ ((i * 17) & 0xFF))
out.append(t)
state ^= t
# Redundant consistency check (just to add noise)
chk = (sum(out) + ((out[2] << 1) & 0xFF) + out[5]) & 0xFF
if chk != 0xEE:
return False
goal = b"\x85\x2c\xe0\xa5\xd0\x6b\xf0\x62"
return bytes(out) == goal
def mystery(x):
try:
if type(x) is not str:
return False
b = x.encode("utf-8")
except Exception:
return False
n = 7
if len(b) != n:
return False
# Printable ASCII excluding space
if any(c < 33 or c > 126 for c in b):
return False
out = []
state = 0x3D
for i, byte in enumerate(b):
# Evolving state based on position
state = (state * 53 + i * 17 + 29) & 255
# Complex byte transformation
t = (byte ^ state) & 255
t = (t + ((i * 23 + 11) & 255)) & 255
# Dependency on previous output
if i > 0:
t ^= (out[i-1] >> 1)
out.append(t)
goal = (1, 51, 145, 27, 143, 146, 116)
# Extra consistency check
if (sum(out) ^ (out[0] * 3) ^ out[-1]) & 255 != 6:
return False
return tuple(out) == goal
def mystery(x):
# Total function: never raise.
try:
if type(x) is not int:
return False
if x < 0 or x >= (1 << 64):
return False
# Require x to be a specific IEEE-754 quiet-NaN bit-pattern (but we never unpack to float).
sign = (x >> 63) & 1
exp = (x >> 52) & 0x7FF
mant = x & ((1 << 52) - 1)
if sign != 0 or exp != 0x7FF or mant == 0:
return False
if ((mant >> 51) & 1) != 1: # quiet-NaN bit
return False
# --- Hidden target construction (obfuscated 8-byte decode) ---
enc = (0x85, 0xEA, 0xA9, 0xFE, 0x18, 0x5A, 0xDB, 0x89)
state = 0xA7
tgt = []
for i, c in enumerate(enc):
state = (state * 73 + 41 + i * 17) & 0xFF
ks = (state ^ (state >> 2) ^ ((state << 5) & 0xFF)) & 0xFF
tgt.append((c ^ ks) & 0xFF)
target_u = int.from_bytes(bytes(tgt), "big") # 64-bit integer
# --- 64-bit permutation (Feistel network) ---
M32 = (1 << 32) - 1
M64 = (1 << 64) - 1
def rotl32(v, r):
r &= 31
v &= M32
return ((v << r) | (v >> (32 - r))) & M32
# key schedule (looks arbitrary, but deterministic)
keys = []
k = 0xC3A5C85C
for i in range(10):
k = (k + 0x9E3779B9 + (i * 0x7F4A7C15)) & M32
k ^= rotl32(k, (i * 3 + 7) & 31)
keys.append(k)
def f(r, k):
r &= M32
t = (r + k + 0x9E3779B9) & M32
t ^= rotl32(r, (k >> 27) & 31)
t = (t * 0x85EBCA6B) & M32
t ^= (t >> 13)
return t & M32
def perm64(u):
u &= M64
L = (u >> 32) & M32
R = u & M32
for k in keys:
L, R = R, (L ^ f(R, k)) & M32
return ((L << 32) | R) & M64
# Whitening (prevents "just compare to target_u" patterns)
C = 0xD1B54A32D192ED03
# Additional "noise" constraint derived from the hidden target (doesn't reveal it directly).
# This is redundant if you fully reverse, but adds friction to guessing.
if (x ^ (x >> 1) ^ (x >> 3) ^ (x >> 7)) & 0xFFFF != (
(target_u ^ (target_u >> 1) ^ (target_u >> 3) ^ (target_u >> 7)) & 0xFFFF
):
return False
return perm64(x ^ C) == perm64(target_u ^ C)
except Exception:
return False