def mystery(x):
if type(x).__name__[0] != 's' or len(x) != 8:
return False
v = [ord(c) ^ 42 for c in x]
if not all(26 < n < 81 for n in v) or v[0] != 75:
return False
w = [(v[i] + i) % 128 for i in range(8)]
return w == w[::-1]
import hashlib
import functools
def mystery(x):
if not isinstance(x, str) or not x:
return False
try:
# Condition 1: A cryptographic property.
h = hashlib.md5(x.encode('utf-8')).hexdigest()
if not h.startswith('82a5c5'):
return False
# Condition 2: A number-theoretic property.
s = sum(ord(c)**2 for c in x)
if s % 997 != 197:
return False
# Condition 3: A bitwise property.
c = functools.reduce(lambda a, b: a ^ ord(b), x, 0)
if c != 20:
return False
except (TypeError, ValueError):
return False
return True
def mystery(x):
if not isinstance(x, int) or x <= 0:
return False
s = str(x)
if len(s) != 9:
return False
# Must be a perfect square
r = int(x ** 0.5)
while r * r > x:
r -= 1
while (r + 1) * (r + 1) <= x:
r += 1
if r * r != x:
return False
# Digit sum must be 36
if sum(int(d) for d in s) != 36:
return False
# First digit must equal last digit
if s[0] != s[-1]:
return False
# Middle digit must be 2
if s[4] != '2':
return False
return True
import re
def mystery(x):
def count_collatz_steps(n):
"""Calculates the number of steps for n to reach 1 using the Collatz sequence."""
if n <= 0: return -1
if n == 1: return 0
steps = 0
# Safety break after 1000 steps to avoid very long or non-terminating sequences.
for _ in range(1000):
if n % 2 == 0:
n = n // 2
else:
n = 3 * n + 1
steps += 1
if n == 1:
return steps
return -1 # Failed to reach 1 within limit
def run_ca(state_bits, generations, rule_number=30):
"""Runs a 1D elementary cellular automaton with circular boundary conditions."""
# Create a mapping from neighbor pattern to next state based on the rule number.
rule_map = {
(p_left, p_center, p_right): (rule_number >> (p_left*4 + p_center*2 + p_right)) & 1
for p_left in [0,1] for p_center in [0,1] for p_right in [0,1]
}
current_state = list(state_bits)
n = len(current_state)
if n == 0: return []
for _ in range(generations):
next_state = [0] * n
for i in range(n):
left = current_state[(i - 1 + n) % n]
center = current_state[i]
right = current_state[(i + 1) % n]
next_state[i] = rule_map[(left, center, right)]
current_state = next_state
return current_state
# Condition 1: The input must be a string with a specific "version" format.
if not isinstance(x, str):
return False
match = re.fullmatch(r'v(\d+)\.(\d+)\.(\d+)\.(\d+)', x)
if not match:
return False
# Condition 2: A number-theoretic property derived from the version numbers.
try:
nums = [int(g) for g in match.groups()]
if any(n == 0 for n in nums): # Collatz is defined for positive integers.
return False
# The sum of Collatz steps for the four numbers must equal a magic constant.
if sum(count_collatz_steps(n) for n in nums) != 30:
return False
except (ValueError, IndexError):
return False
# Condition 3: A property derived from a one-way computational process.
try:
# The entire string is converted to a binary sequence.
initial_bits = []
for char in x:
initial_bits.extend([int(b) for b in format(ord(char), '08b')])
# This sequence is evolved using a chaotic cellular automaton (Rule 30).
final_state = run_ca(initial_bits, generations=5)
# The population count of the final state must match another magic constant.
if sum(final_state) != 33:
return False
except Exception:
return False
return True
def mystery(x):
if not isinstance(x, int) or x <= 0:
return False
s = str(x)
if len(s) != 8:
return False
if sum(int(d) for d in s) != 40:
return False
if x % 8 != 0:
return False
if sum(int(d) for d in s[:4]) != sum(int(d) for d in s[4:]):
return False
if s != s[::-1]:
return False
distinct = set(int(d) for d in s)
from functools import reduce
if reduce(lambda a, b: a * b, distinct, 1) != 32:
return False
return True
import collections
def mystery(x):
"""
A puzzle that combines structural, graph-theoretic, and mathematical constraints.
"""
# === Condition 1: Basic Structural Properties ===
# The input must be a 10-character lowercase string with all unique characters.
if not isinstance(x, str) or len(x) != 10 or not x.islower():
return False
if len(set(x)) != 10:
return False
# === Condition 2: A Graph-Theoretic Property ===
# The characters of the string must form a connected graph, where an edge exists
# between two characters if the absolute difference of their 1-based alphabet
# positions is a prime number less than 25.
try:
# Define the alphabet graph's adjacency rule
primes = {2, 3, 5, 7, 11, 13, 17, 19, 23}
def get_pos(char):
return ord(char) - ord('a') + 1
adj = collections.defaultdict(list)
chars = list(x)
# Build the specific subgraph for the input string `x`
for i in range(len(chars)):
for j in range(i + 1, len(chars)):
u, v = chars[i], chars[j]
pos_u, pos_v = get_pos(u), get_pos(v)
if abs(pos_u - pos_v) in primes:
adj[u].append(v)
adj[v].append(u)
# Check if the subgraph is connected using a Breadth-First Search (BFS)
q = collections.deque([chars[0]])
visited = {chars[0]}
while q:
node = q.popleft()
for neighbor in adj.get(node, []):
if neighbor not in visited:
visited.add(neighbor)
q.append(neighbor)
if len(visited) != len(chars):
return False
except (IndexError, TypeError):
return False
# === Condition 3: A Mathematical Obfuscation ===
# The Scrabble scores of the letters, when treated as coefficients of a
# polynomial P(z) = s_0*z^9 + s_1*z^8 + ... + s_9, must evaluate to a
# specific "magic" value when z=2.
try:
scrabble_scores = {
'a': 1, 'b': 3, 'c': 3, 'd': 2, 'e': 1, 'f': 4, 'g': 2, 'h': 4,
'i': 1, 'j': 8, 'k': 5, 'l': 1, 'm': 3, 'n': 1, 'o': 1, 'p': 3,
'q': 10, 'r': 1, 's': 1, 't': 1, 'u': 1, 'v': 4, 'w': 4, 'x': 8,
'y': 4, 'z': 10
}
scores = [scrabble_scores[c] for c in x]
# Evaluate the polynomial P(z) at z=2
poly_val = 0
for i, score in enumerate(scores):
power = len(scores) - 1 - i
poly_val += score * (2 ** power)
if poly_val != 2490:
return False
except KeyError:
return False
return True
def mystery(x):
if not isinstance(x, int) or x <= 0:
return False
s = str(x)
if len(s) != 6 or '0' in s:
return False
d = [int(c) for c in s]
if d[0]*d[1]*d[2]*d[3]*d[4]*d[5] != 2016:
return False
if sum(d) != 27:
return False
if d[0] >= d[5]:
return False
if d[0] + d[5] != d[2] + d[3]:
return False
if d[1] + d[4] != 11:
return False
if d[1] >= d[4]:
return False
return True
import re
def mystery(x):
"""
A puzzle that combines constraints from formal languages, graph theory, and digital logic.
"""
# === Condition 1: Structural Constraint ===
# The input must be a string representing a sequence of 8 chessboard squares.
if not isinstance(x, str):
return False
if not re.fullmatch(r'([a-h][1-8]){8}', x):
return False
# Helper function to parse the algebraic notation into a list of (col, row) tuples.
# This is defined inside to encapsulate the puzzle's logic.
def parse_path(s):
path = []
for i in range(0, len(s), 2):
sq = s[i:i+2]
col = ord(sq[0]) - ord('a')
row = int(sq[1]) - 1
path.append((col, row))
return path
path = parse_path(x)
# === Condition 2: Graph-Theoretic Constraint ===
# The sequence of squares must represent a valid, non-repeating knight's path.
if len(set(path)) != 8:
return False
for i in range(len(path) - 1):
c1, r1 = path[i]
c2, r2 = path[i+1]
dc, dr = abs(c1 - c2), abs(r1 - r2)
if not ((dc == 1 and dr == 2) or (dc == 2 and dr == 1)):
return False
# This acts as a simple checksum to prune the vast search space of knight paths.
if sum(c + r for c, r in path) != 56:
return False
# === Condition 3: Computational Obfuscation ===
# A custom, one-way function based on a Linear-Feedback Shift Register (LFSR).
# The final state of the LFSR must match a specific magic number.
try:
# The seed is derived by XORing the 4-byte chunks of the ASCII input string.
b = x.encode('ascii')
seed = 0
for i in range(0, 16, 4):
chunk = int.from_bytes(b[i:i+4], 'big')
seed ^= chunk
# This simulates a 32-bit Galois LFSR for 128 steps.
# The polynomial and step count are arbitrary, making them hard to guess.
lfsr = seed
mask = 0x80200007 # Corresponds to polynomial x^32 + x^22 + x^2 + x + 1
for _ in range(128):
if (lfsr & 1) == 1:
lfsr = (lfsr >> 1) ^ mask
else:
lfsr = lfsr >> 1
# The final state must match the pre-calculated magic number.
if lfsr != 0x9028a6f3:
return False
except Exception:
return False
return True
def mystery(x):
if not isinstance(x, str) or len(x) != 8:
return False
if not all(c.isdigit() for c in x):
return False
d = [int(c) for c in x]
if d != d[::-1]:
return False
if sum(d) != 36:
return False
distinct = set(d)
prod = 1
for digit in distinct:
prod *= digit
if prod != 280:
return False
n = int(x)
if n % 8 != 0:
return False
if not (d[0] < d[1] and d[2] > d[3]):
return False
return True
import math
def mystery(x):
"""
A puzzle that combines constraints from formal language theory (L-systems)
and computational geometry (turtle graphics).
"""
# === Condition 1: Structural properties of the rule string 'x' ===
# The input must be a string with a very specific composition.
if not isinstance(x, str):
return False
# The alphabet for the rule is restricted to 'A', 'B', '+', '-'.
if not all(c in 'AB+-' for c in x):
return False
# The rule must have a specific length and an equal number of each character
# to significantly narrow the search space from all possible strings.
if len(x) != 16:
return False
if x.count('A') != 4 or x.count('B') != 4 or x.count('+') != 4 or x.count('-') != 4:
return False
# === Condition 2: L-System Generation and Checksum ===
# The input 'x' is treated as a production rule in a Lindenmayer system (L-system).
try:
axiom = 'A'
rules = {
'A': x, # The user-provided rule for 'A'
'B': '+A-BB--B-A++A+B' # A fixed, complex rule for 'B'
}
iterations = 4
# Generate the full command string by applying rules iteratively.
current_string = axiom
for _ in range(iterations):
next_string = []
for char in current_string:
next_string.append(rules.get(char, char))
current_string = "".join(next_string)
# A checksum on the generated string to filter out most incorrect rules
# without running the full (and slower) geometric simulation.
if len(current_string) < 100:
return False
checksum = sum(ord(c) for c in current_string[:100])
if checksum != 6530:
return False
except (TypeError, KeyError):
return False
# === Condition 3: Geometric Interpretation (Turtle Graphics) ===
# The final string is interpreted as drawing commands for a turtle. This acts
# as a one-way "hash" function; it's easy to compute but infeasible to reverse.
try:
angle_deg = 60.0
angle_rad = math.radians(angle_deg)
pos = [0.0, 0.0] # (x, y) position
heading = 0.0 # Angle in radians
# 'A' and 'B' mean move forward by 1 unit.
# '+' and '-' mean turn left/right.
for cmd in current_string:
if cmd in 'AB':
pos[0] += math.cos(heading)
pos[1] += math.sin(heading)
elif cmd == '+':
heading += angle_rad
elif cmd == '-':
heading -= angle_rad
# The final state of the turtle must match pre-calculated "magic" values.
target_pos = [-8.0, 13.856406460551018]
target_heading_rad = -2.0943951023931953 # -120 degrees
if not math.isclose(pos[0], target_pos[0], rel_tol=1e-9):
return False
if not math.isclose(pos[1], target_pos[1], rel_tol=1e-9):
return False
# Normalize heading to be within [-pi, pi] for a stable comparison.
heading = math.atan2(math.sin(heading), math.cos(heading))
if not math.isclose(heading, target_heading_rad, rel_tol=1e-9):
return False
except Exception:
return False
return True